低密度脑电自适应去噪方法
作者:
作者单位:

1.北京师范大学认知神经科学与学习国家重点实验室,北京100875;2.北京师范大学系统科学学院,北京 100875

作者简介:

通讯作者:

基金项目:

国防基础科研计划(JCKY2021208B019)。


An Adaptive Denoising Algorithm for Few-Channel EEG
Author:
Affiliation:

1.State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China;2.School of Systems Science, Beijing Normal University, Beijing 100875, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    便携式和可穿戴设备的低密度脑电图更便于实际使用,但会受到多种不可预知的噪声影响,给去噪带来极大的困难。脑活动成分较为相似,在特征空间分布较为紧密,而噪声成分与脑电成分不同,差异性大,在特征空间分布较为分散。本文提出了一种低密度脑电自适应去噪方法,采用小波分解和盲源分离方法提取潜在成分,并基于脑电和噪声成分在特征空间的分布特性,采用单类支持向量机识别并去除远离成分分布中心的异常成分。仿真数据的定量分析结果表明,提出的方法在肌电、眼电和工频等噪声抑制方面均优于现有方法;通过对真实脑电数据的成分簇可视化分析,直观展示了低密度脑电噪声有效去除的原因。结合盲源分离和异常检测的思路进行低密度脑电去噪,不需要设定特定噪声相关的特征参数,能够自适应地去除多种类型噪声同时有效保留脑活动成分,具有优良的性能和实用性。

    Abstract:

    Few-channel electroencephalogram (EEG) is more suitable and affordable for practical use as a portable or wearable device, but it is subject to a variety of unpredictable artifacts, making removal of artifacts extremely difficult. In the feature space, the artifact-related components are dispersed while the components related to brain activities are closely distributed. We propose an outlier detection-based method for artifact removal under the few-channel condition. The underlying components (sources) are extracted using wavelet decomposition and blind source separation methods, and the artifact-related components far from the center of distribution of all components are considered as outliers and are identified using one-class support vector machine. In the quantitative analyses with semi-simulated data, the proposed method outperforms the threshold-based methods for various artifacts, including EMG, electro-oculogram(EOG) and power line noise. The visualization of the clusters of components demonstrates the effectiveness of the hypothesis. This study innovatively combines the ideas of blind source separation and outlier detection, without setting artifact-specific parameters, and is capable of adaptively removing various artifacts while effectively retaining brain activities, showing excellent performance and usability.

    参考文献
    相似文献
    引证文献
引用本文

陈贺,张昊,柴一帆,李小俚.低密度脑电自适应去噪方法[J].数据采集与处理,2023,38(4):824-836

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-06-21
  • 最后修改日期:2022-10-19
  • 录用日期:
  • 在线发布日期: 2023-07-25