基于同步性静息态脑网络的原发性失眠诊断
作者:
作者单位:

1.大连理工大学医学部,大连116024;2.大连医科大学第一附属医院心身睡眠科,大连116011

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年基金(61703069)。


Diagnosis of Primary Insomnia Based on Synchronous Resting-State Brain Network
Author:
Affiliation:

1.Faculty of Medicine, Dalian University of Technology, Dalian 116024, China;2.Department of Psychosomatic Sleep, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    全球有约1/3的人口曾受到失眠的困扰,研究表明脑电的高度觉醒是失眠的一个重要原因,表现在高频脑电活动的增强。然而,由于存在较大的干扰因素,日常静息态条件下评判困难。因此本文提取原发性失眠患者和健康对照的脑电图(Electroencephalogram,EEG)高频频带(Beta、Gamma频带),使用更适合EEG这种非线性、非平稳信号的相位锁相值(Phase locking value, PLV)方法来构建静息态功能脑网络,使用自适应阈值技术进行二值化处理。为了提升失眠症脑网络特征评价的可靠性,综合了各脑网络特征,提出了用于失眠症检测的脑网络综合度量指标。且发现在Gamma频带上,综合指标在原发性失眠患者组与健康对照组之间存在显著性差异(p=0.044)。应用支持向量机(Support vector machine, SVM)进行自动分类,在Beta频带上的正确率达77.7%,灵敏度达90.7%,相较于原始网络特征正确率提高了9.4%,灵敏度提高了20.7%;同时与现有研究对比,本文提出的脑网络综合度量指标的正确率提升了19.4%,灵敏度提升了20.7%。此外,发现Beta频带的综合度量指标分类效果更好,对于失眠症患者的日常诊断具有潜在的应用价值。

    Abstract:

    About a third of the world’s population suffers from insomnia, and many studies have shown that elevating high frequency band activity is an important cause of insomnia. However, due to the existence of large disturbance factors, it is difficult to evaluate in daily resting state conditions. Therefore, the Beta and Gamma bands of electroencephalogram (EEG) are extracted from patients with primary insomnia and normal controls. The phase locking value (PLV), which is more suitable for nonlinear and non-stationary signals such as EEG, is used to obtain the adjacency matrix to construct rest-state functional brain network. The adaptive threshold technology is used to binarize the adjacency matrix. In order to fuse various characteristics of brain networks, a comprehensive measurement index of brain networks is proposed for insomnia detection. In Beta frequency band, the comprehensive indexes are significantly different between the primary insomnia group and the normal control group (p=0.044). The automatic classification using support vector machine (SVM) achieves the accuracy of 77.7% and the sensitivity of 90.7% in Beta band. Compared with the original network characteristics, the classification accuracy and the sensitivity of the proposed comprehensive index are increased by 9.4% and 20.7%, respectively. At the same time, compared with the existing studies, the classification accuracy and the sensitivity of the proposed comprehensive index are increased by 19.4% and 20.7%, respectively. It shows the proposed method has potential application value in the diagnosis of insomnia.

    参考文献
    相似文献
    引证文献
引用本文

靳明艳,张驰,常翼,丛丰裕.基于同步性静息态脑网络的原发性失眠诊断[J].数据采集与处理,2023,38(4):802-814

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-03
  • 最后修改日期:2022-09-27
  • 录用日期:
  • 在线发布日期: 2023-07-25