基于深度学习的自动睡眠分期研究综述
作者:
作者单位:

上海理工大学健康科学与工程学院,上海 200093

作者简介:

通讯作者:

基金项目:

上海市科委科技创新行动计划(20Y11906600);上海理工大学医工交叉项目(1021308424)。


Automatic Sleep Staging Based on Deep Learning: A Review
Author:
Affiliation:

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    睡眠分期是为了分析多导睡眠图记录而进行的重要过程,在睡眠监测和睡眠障碍诊疗中发挥着关键作用。传统的手动睡眠分期需要专业知识,繁琐且耗时;而深度学习通过模拟人脑解释信息的机制来构建模型,具有强大的自动特征提取及特征表达功能。将深度学习方法应用于睡眠分期研究,不依赖于手工特征设计,能够实现睡眠分期的自动化。本文着眼于2017年以来的一些典型的自动睡眠分期研究,重点从单视图和多视图输入两个方面系统回顾了应用于自动睡眠分期中的深度学习模型,并分析了多视图模型存在的难点,指出了其具有的潜在研究价值。最后,对自动睡眠分期未来的研究方向进行了探讨。

    Abstract:

    Sleep staging is a vital process for analyzing polysomnographic recordings, which plays a key role in sleep monitoring and diagnosis of sleep disorders. Traditional manual sleep staging requires expertise, which is cumbersome and time-consuming. Deep learning constructs models by simulating the mechanism of human brain to interpret information, and has powerful automatic feature extraction and feature expression functions. Applying deep learning method to the research of sleep staging does not rely on manually designed features and can realize the automation of sleep staging. This article emphasizes on some typical automatic sleep staging studies since 2017, and conducts a systematic review of deep learning model applied in automatic sleep staging from two aspects of single-view and multi-view input. Then, the difficulties of deep learning model based on multi-view input are analyzed and its potential research value is pointed out. Finally, possible future research direction is discussed.

    参考文献
    相似文献
    引证文献
引用本文

刘颖,储浩然,章浩伟.基于深度学习的自动睡眠分期研究综述[J].数据采集与处理,2023,38(4):759-776

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-11-25
  • 最后修改日期:2023-03-16
  • 录用日期:
  • 在线发布日期: 2023-07-25