一种全局供需感知的均值场多智能体强化学习订单分配算法
作者:
作者单位:

华北电力大学控制与计算机工程学院, 北京 102206

作者简介:

通讯作者:

基金项目:

国家自然科学基金(52078212)。


Mean-Field Multi-agent Reinforcement Learning Order Dispatch Algorithm with Awareness of Global Supply-Demand Dynamics
Author:
Affiliation:

School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种具备全局供需动态感知能力、基于均值场多智能体强化学习的网约车平台订单分配算法。该算法通过将多智能体强化学习与均值场理论相结合,提升了智能体在局部空间上相互之间的协作性;通过注入全局空间上供需的动态分布信息,提升了智能体对全局供需分布的感知和优化能力。本文构建了真实历史数据驱动的模拟器,用于算法的训练和评估。实验表明,在全天时段和高峰期时段两个不同场景下,本文提出的算法在网约车司机累计收益及订单应答率两个重要指标上均显著优于现有的订单分配算法。实验结果充分验证了本文提出算法的有效性。

    Abstract:

    This paper proposes an order dispatch algorithm of online ride-hailing platform based on mean-field multi-agent reinforcement learning with the ability to globally perceive supply-demand dynamics. Our algorithm improves the collaboration between agents in the local area by integrating multi-agent reinforcement learning with mean-field theory, and enhances the ability of agents on perceiving and optimizing the global supply-demand gap across the global area by injecting the context about global supply-demand dynamics. Besides, we built a data-driven simulator for the training and evaluation of algorithms. Extensive experiments show that in two different scenarios of a whole day and rush hour, our algorithm significantly outperforms the existing order dispatch algorithms in terms of order response rate and accumulated drivers’ income. The experimental results convincingly validate the effectiveness of our algorithm.

    参考文献
    相似文献
    引证文献
引用本文

宋旺,胡祥,张玉辉,卫文江,周雅诗,康傲.一种全局供需感知的均值场多智能体强化学习订单分配算法[J].数据采集与处理,2023,38(3):652-664

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-19
  • 最后修改日期:2022-08-20
  • 录用日期:
  • 在线发布日期: 2023-05-25