基于对抗域适应的红外舰船目标分割
作者:
作者单位:

1.北京工业大学信息学部,北京 100124;2.桂林电子科技大学人工智能学院,桂林 541004

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61906005, 62166002,62176009);北京市教育委员会科技计划(KM202110005028);北京工业大学交叉科学研究院(2021020101);北京工业大学国际科研合作种子基金(2021A01)。


Infrared Ship Target Segmentation Based on Adversarial Domain Adaptation
Author:
Affiliation:

1.Faculty of Information Technology, Beijing University of Technology, Beijing 100124,China;2.School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提高红外舰船目标的分割准确率,提出一种基于对抗域适应的红外舰船目标分割方法,其中有标注的可见光舰船图像为源域,没有标注的红外舰船图像为目标域。为了解决两个域之间的风格差异问题,本文依次对源域的可见光图像进行灰度化和白化预处理,将其转换为具有目标域风格的图像。对于目标域的红外图像,使用去噪网络进行优化;接着,为了解决判别网络视野受限问题,设计基于空洞卷积的判别网络;最后,针对目标域预测图像置信度低问题,将目标域预测图像的信息熵加入到对抗损失中。在可见光和红外舰船图像组成的数据集上的实验结果高于现有方法,证明了本文方法的有效性。

    Abstract:

    To improve the segmentation accuracy of infrared ship target, we present an adversarial domain adaptation network for infrared ship target segmentation (ISADA), where the labeled visible ship images are used as the source domain and the unlabeled infrared ship images as the target domain. To address the issue of style difference between the two domains, we preprocess the visible images of the source domain in turn with graying and whitening to convert them into the images with the style of the target domain. For the infrared images in the target domain, we optimize them with a denoising network. Furthermore, to solve the matter of limited receptive field of the discriminative network, we design a discriminative network based on atrous convolution. Finally, for the problem of low confidence of the target domain prediction images, the information entropy of the target domain prediction images is added to the adversarial loss. The experimental results on the datasets composed of visible and infrared ship images is superior than the state-of-the-art methods, which demonstrates the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

高子航,刘兆英,张婷,李玉鑑.基于对抗域适应的红外舰船目标分割[J].数据采集与处理,2023,38(3):598-607

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-08
  • 最后修改日期:2022-08-26
  • 录用日期:
  • 在线发布日期: 2023-05-25