融合类别注意力的铝硅合金显微图像分割方法
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650093;2.云南省计算机技术应用重点实验室,昆明 650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(52061020,61971208); 云南计算机技术应用重点实验室开放基金(2020103)。


Segmentation of Al-Si Alloy Microscopic Image by Fusing Class Attention
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China;2.Yunnan Key Laboratory of Computer Technologies Application, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提取铝硅合金显微图像的初晶硅区域,提出一种结合类别注意力块(Class attention block, CAB)的改进模型类别注意力网络(Class attention network, CA-Net)。类别注意力块从特征图中计算各通道与每个类别的相关性信息,并将不同类别的相关性信息融合产生注意力权重,以使特征通道的权重与其对任务类别的贡献相关,从而增强重要特征的表达,并抑制无关特征的干扰。在铝硅合金显微图像数据集上进行实验,本文提出的方法在Dice系数、Jaccard相似度、敏感度、特异度和分割准确率上的结果分别为94.82%、90.16%、94.54%、98.80%和97.97%。相比CCNet、SPNet和TA-Net等方法,CA-Net能够有效改进铝硅合金显微图像中初晶硅区域的分割效果。

    Abstract:

    An improved model of class attention network (CA-Net) incorporating a class attention block (CAB) is proposed to extract the primary silicon regions of the microscopic images of Al-Si alloys in this paper. The correlation information of each channel to each class is calculated from the feature map by class attention block, and the correlation information of different classes is fused to generate attention weights for correlating the weights of feature channels with their contributions to the class in the task, thus the representation of important features is enhanced and the interference of irrelevant features is suppressed. Experiments are conducted on the Al-Si alloy microscopic image dataset, and the proposed method obtains results of 94.82%, 90.16%, 94.54%, 98.80%, and 97.97% for Dice coefficient, Jaccard similarity, sensitivity, specificity, and segmentation accuracy, respectively. The proposed CA-Net can effectively improve the segmentation effect of the primary silicon region in Al-Si alloy microscopic images compared with CCNet, SPNet, TA-Net, and other methods.

    参考文献
    相似文献
    引证文献
引用本文

沈韬,金凯,司昌凯,郑剑锋,刘英莉.融合类别注意力的铝硅合金显微图像分割方法[J].数据采集与处理,2023,38(3):574-585

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-01-27
  • 最后修改日期:2022-05-02
  • 录用日期:
  • 在线发布日期: 2023-05-25