基于超像素块聚类与低秩特性的高光谱图像降噪
作者:
作者单位:

1.上海海洋大学信息学院,上海 201306;2.自然资源部东海预报中心,上海 200136

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2021YFC3101601);国家自然科学基金面上项目(61972240,41906179);上海市科委地方能力建设项目(20050501900)。


Hyperspectral Image Denoising Based on Superpixel Block Clustering and Low-Rank Characteristics
Author:
Affiliation:

1.College of Information Technology, Shanghai Ocean University, Shanghai 201306, China;2.East China Sea Forecast Center, Ministry of Natural Resources, Shanghai 200136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高光谱图像通常受到高斯噪声、脉冲噪声、死线和条纹等干扰,因此去噪必不可少。现有基于低秩特性的降噪方法通过引入空间信息改善了降噪效果,但由于其只利用了局部相似性或非局部自相似性,而对在光谱维度存在一定结构信息的稀疏噪声去除效果较差。本文提出了基于超像素块聚类与低秩特性的高光谱图像降噪方法,实现了分块的自适应划分与聚类,在较好地保留了局部细节的同时又充分利用了非局部空间自相似性,且实验表明聚类后的超像素块组成的同物分块具有良好的空-谱双重低秩属性。该方法首先对高光谱图像进行超像素分割,再对超像素块进行聚类,得到同物分块;然后对其建立低秩矩阵恢复模型并求解,最终得到降噪后图像。本文分别在模拟数据和真实数据上进行实验,并与其他基于低秩特性的方法进行比较,结果表明:本文方法对混合噪声,尤其是具有一定结构信息的稀疏噪声具有较好的降噪性能。

    Abstract:

    Hyperspectral images are usually contaminated by Gaussian noise, impulse noise, dead lines and stripes. So, denoising is an essential step. The existing denoising methods based on low-rank characteristics introduce spatial information to improve the noise reduction effect. But because they often only use local similarity or non-local self-similarity, it has poor removal effect of sparse noise with structural information in the spectral dimension. Therefore, we propose a hyperspectral image denoising method based on superpixel block clustering and low-rank characteristics. The method realizes the adaptive partition and clustering of blocks, and makes full use of the non-local spatial self-similarity while retaining the local details. The experiments show that the same object block composed of clustered superpixel blocks has a good spatial-spectral dual low-rank attributes. Firstly, a superpixel segmentation method is applied to hyperspectral images, and the superpixel blocks are clustered to obtain the same object blocks. Secondly, the low-rank matrix restoration model is established and solved, and finally the denoised image is obtained. We conduct experiments on simulated data and real data respectively, and compare with other methods based on low-rank characteristics. The results show that this method has better denoising performance for mixed noise, especially sparse noise with structural information.

    参考文献
    相似文献
    引证文献
引用本文

张明华,武玄,宋巍,梅海彬,贺琪,苏诚.基于超像素块聚类与低秩特性的高光谱图像降噪[J].数据采集与处理,2023,38(3):549-564

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-04
  • 最后修改日期:2022-09-15
  • 录用日期:
  • 在线发布日期: 2023-05-25