基于特定领域解码的域泛化医学图像分割方法
作者:
作者单位:

1.南京大学计算机软件新技术国家重点实验室, 南京 210023;2.南京大学健康医疗大数据国家研究院, 南京 210023;3.东南大学计算机科学与工程学院, 南京 210023

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2019YFC0118301); 国家自然科学基金(81927808)。


Domain Generalization via Domain-Specific Decoding for Medical Image Segmentation
Author:
Affiliation:

1.State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,China;2.National Institute of Healthcare Data Science, Nanjing University, Nanjing 210023,China;3.School of Computer Science and Engineering, Southeast University, Nanjing 210023,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多源域领域泛化是模型利用多个不同领域中的语义信息,并且能够很好地泛化到未知领域上。在医学图像中,不同领域之间的跨度比较大,模型泛化性能在未知域上会有较大程度的下降。为了解决这一问题,本文提出了一种编码特征再针对特定领域进行解码的网络结构。该模型使用一个通用编码器来学习所有领域上的领域不变特征,并通过特定领域解码器还原原有图像以加强其对图像特征的复原能力。此外,该模型还通过生成特征迁移图像与源域图像进行对抗学习来加强编码器学习领域不变特征的能力。 同时,本文在模型中还引入了特殊构造的分割融合预处理步骤来扩充数据集以增强模型的泛化能力,并进一步提高了本文提出网络结构的性能。在两个医学图像的分割任务中,大量实验数据表明,本文提出的模型相比现有先进模型表现出了优异的性能,此外本文还进行了一系列消融实验,证明了模型的有效性。

    Abstract:

    Multi-source domain generalization (DG) aims to train a model uses semantic information of different domains and can be generalized to unknown domains. In the medical image, the gap between different domains is relatively large, and the model will suffer from performance drop in the unknown domain. In order to solve this problem, this paper proposes a network structure which encodes images for features and decodes domain specific features. The model uses a generic encoder, which learns all source domains for the domain-invariant features, and several domain-specific decoders to reconstruct the original images to promote the ability of extracting image features. Meanwhile, these decoders also help to generate transferred image to engage in adversarial learning with images of source domains in order to improve the encoder’s ability of learning invariant features. In addition, we also introduce a special Cutmix strategy which change foreground information of different domain images to augment the data set in the model to enhance the generalization ability of the model and further improve the performance of our network structure. In two medical image segmentation tasks, a large number of experimental data show that the proposed model has excellent performance compared with the existing advanced models. In addition, a series of ablation experiments are carried out to prove the effectiveness of the model.

    参考文献
    相似文献
    引证文献
引用本文

叶怀泽,周子奇,祁磊,史颖欢.基于特定领域解码的域泛化医学图像分割方法[J].数据采集与处理,2023,38(2):324-335

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-08
  • 最后修改日期:2022-10-12
  • 录用日期:
  • 在线发布日期: 2023-03-25