基于深度残差神经网络的GNSS接收机干扰抑制方案
作者:
作者单位:

1.西安交通大学信息与通信工程学院,西安 710049;2.地理信息工程国家重点实验室,西安 710054;3.西安测绘研究所,西安 710054

作者简介:

通讯作者:

基金项目:

地理信息工程国家重点实验室基金(SKLGIE2020-Z-2-1)。


An Interference Suppression Scheme Based on Deep Residual Neural Networks for GNSS Receivers
Author:
Affiliation:

1.School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China;2.State Key Laboratory of Geo-information Engineering, Xi’an 710054, China;3.Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在各种压制式和欺骗式干扰随机存在的全球卫星导航系统(Global navigation satellite system, GNSS)复杂应用环境下,传统先估计干扰信号参数再抵消的干扰抑制方法需要针对不同类型的干扰设计专门的参数估计和抵消算法,设计工作量大且缺乏通用性。为此本文提出了一种基于深度残差神经网络的干扰抑制方案。首先,针对典型的GNSS干扰类型搭建和训练了相应的残差神经网络,实现从受扰接收信号中直接提取有用卫星信号。然后,结合干扰分类识别结果,将对一维接收信号进行短时傅里叶变换(Short-time fourier transform, STFT)预处理后的时频谱二维信号送入与干扰类型相对应的残差网络,网络输出消除了干扰信号影响的有用卫星信号的时频二维谱。该方案无需对不同类型的干扰采用不同的参数估计和干扰抵消方法,对各类压制干扰和欺骗信号均采用相同的处理流程。实验结果表明相比于先估计干扰信号参数再进行抵消的干扰抑制方案,所提方案对各种GNSS干扰类型均具有较好的抑制效果,具备一定的通用性。

    Abstract:

    In the complex application environment of the global satellite navigation system (GNSS), where various kinds of suppressive interference and spoofing randomly exist, the traditional interference suppressing method that first estimates the interference parameters and then canceles interference signal, will be designed difficultly and has low generality, because the special parameter estimators and the interference reducing methods are needed for various types of interference. Therefore, an interference suppression scheme based on deep residual neural networks (DRNNs) is proposed in this paper. First, the corresponding DRNN is built and trained for each typical GNSS interference. It can directly extract the target satellite signal from the interfered signal. Second, according to the interference classification and recognition result, the corresponding DRNN is selected. The time-frequency two dimensional (2D) signals obtained by short-time Fourier transform over the received one-dimensional signal are then entered into the chosen DRNN. The output is the 2D time-frequency spectrum of the useful signal, where the impact of the interference has been suppressed. In our scheme, the same procedure is applied for different kinds of suppressive interference and spoofing. It is not required to design the special designs about the parameter estimation and the interference reduction for various interferences. Experimental results show that the proposed scheme can effectively suppress various GNSS interference, compared with the traditional scheme. It demonstrates a certain of commonality.

    参考文献
    相似文献
    引证文献
引用本文

张国梅,张欣,尹佳文,王华.基于深度残差神经网络的GNSS接收机干扰抑制方案[J].数据采集与处理,2023,38(2):293-303

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-09-07
  • 最后修改日期:2022-11-18
  • 录用日期:
  • 在线发布日期: 2023-03-25