基于粒计算的多源信息融合方法综述
作者:
作者单位:

西南大学人工智能学院,重庆 400715

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61976245)。


Review of Multi-source Information Fusion Methods Based on Granular Computing
Author:
Affiliation:

College of Artificial Intelligence, Southwest University, Chongqing 400715, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多源数据是一种综合多个信息源或数据集的复杂数据类型,其主要特点是不同的信息源隐含不同的知识结构,且从不同的角度刻画和描述了样本以及样本之间的关系。如何协同地融合与集成多源数据,并从不同视角快速地为用户挖掘出整体决策知识,成为数据科学领域亟待破解的科学问题。经典粗糙集理论、多粒度方法、证据理论和信息熵是常见的、有效的多源信息融合方法,已取得较为丰硕的成果。本文基于粒计算的角度对多源信息融合工作进行综述研究,介绍了每种信息融合方法的基本概念以及主要研究思路,并提出了多源信息融合领域中存在的若干问题,为该领域的后续研究提供理论参考。

    Abstract:

    Multi-source data is a complex data type that integrates multiple information sources or data sets. Its main feature is that different information sources imply different knowledge structures, and represent and describe samples and relationships between samples from different perspectives. How to fuse and integrate multi-source data cooperatively and how to quickly mine the overall decision-making knowledge for users from different viewpoints have become a scientific problem that needs to be solved urgently in the field of data science. Classical rough set theory, multi-granularity method, evidence theory and information entropy are common and effective multi-source information fusion methods, which have been widely concerned and achieved fruitful results. Therefore, this paper summarizes the work of multi-source information fusion based on granular computing, reviews the basic concepts and main research ideas of each information fusion method, and puts forward some problems in the field of multi-source information fusion. The obtained results can provide a theoretical reference for the follow-up research in this field.

    参考文献
    相似文献
    引证文献
引用本文

徐伟华,黄旭东,蔡可.基于粒计算的多源信息融合方法综述[J].数据采集与处理,2023,38(2):245-261

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-08-12
  • 最后修改日期:2022-11-01
  • 录用日期:
  • 在线发布日期: 2023-03-25