融合深浅特征和动态选择机制的行人检测研究
作者:
作者单位:

1.昆明理工大学信息工程与自动化学院,昆明 650500;2.昆明理工大学云南省计算机技术应用重点实验室,昆明 650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61971208);云南省中青年学术技术带头人后备人才基金(沈韬,2019HB005);云南省万人计划青年拔尖人才基金(沈韬, 朱艳,云南省人社厅2018 73);云南省重大科技专项基金(202002AB080001-8)。


Pedestrian Detection Incorporating Deep and Shallow Features and Dynamic Selection Mechanisms
Author:
Affiliation:

1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;2.Yunnan Key Laboratory of Computer Technologies Application, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对无人驾驶场景下行人多尺度、小尺度造成漏检率升高,检测精度下降的问题,本文提出一种融合深浅层特征和级联动态选择机制的行人检测方法。首先,在YOLO v3-tiny的基础上基于密集连接的卷积神经网络改进特征提取部分,融合行人的深层特征和浅层特征加强网络对行人的识别能力;其次,在改进的主干网络上级联具有动态选择机制的注意力模块,使检测网络更加适应动态的行人尺度变化;最后,本文选择BDD 100K数据集和Caltech加州理工学院行人数据集进行实验,在保证实时性的前提下(25 ms/张),本文模型在BDD 100K数据集行人漏检率降低11.4%,平均检测精度提高11.7%,在Caltech行人漏检率降低10.1%,平均检测精度提高6.7%,适用于无人驾驶行人检测领域。

    Abstract:

    Aiming at the problem that the multi-scale and small-scale of pedestrians in unmanned scenario causes the increase of missed detection rate and the decrease of detection accuracy, this paper proposes a pedestrian detection method that fuses deep and shallow layer features and cascade dynamic selection mechanism. Firstly, on the basis of YOLO v3-tiny, we improve the feature extraction part based on the densely connected convolutional neural network, and fuse the deep and shallow features of pedestrians to enhance the network’s ability to recognize pedestrians. Secondly, we cascade the attention module with dynamic selection mechanism on the improved backbone network to make the detection network more adaptable to dynamic pedestrian scale changes. Finally, we choose the BDD 100K dataset and the Caltech pedestrian dataset to conduct experiments. Under the premise of real-time performance (25 ms/sheet), the missed detection rate of pedestrian is reduced by 11.4% and the average detection accuracy is improved by 11.7% in the BDD 100K dataset, and the missed detection rate of pedestrian is reduced by 10.1% and the average detection accuracy is improved by 6.7% in the Caltech dataset, which is suitable for unmanned pedestrian detection.

    参考文献
    相似文献
    引证文献
引用本文

沙梦洲,沈韬,曾凯,马倩,曾文健.融合深浅特征和动态选择机制的行人检测研究[J].数据采集与处理,2023,38(1):162-173

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-08-15
  • 最后修改日期:2022-04-18
  • 录用日期:
  • 在线发布日期: 2023-01-25