基于深度学习的显著性目标检测综述
作者:
作者单位:

南京航空航天大学计算机科学与技术学院/人工智能学院/软件学院,南京 211106

作者简介:

通讯作者:

基金项目:


Deep Learning Based Salient Object Detection: A Survey
Author:
Affiliation:

College of Computer Science and Technology/College of Artificial Intelligence/College of Software, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面回顾了3类不同模态的显著性目标检测任务,包括基于RGB图像、基于RGB-D/T(Depth/Thermal)图像以及基于光场图像的显著性目标检测。首先分析了3类研究分支的任务特点,并概述了研究难点;然后就各分支的研究技术路线和优缺点进行阐述和分析,并简单介绍了3类研究分支常用的数据集和主流的评价指标。最后,对基于深度学习的显著性目标检测领域未来研究方向进行了探讨。

    Abstract:

    Salient object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and object tracking by simulating the human visual system to find the most attractive targets for visual attention. With the rapid development of deep learning technology, salient object detection research has made great breakthroughs. This paper presents a comprehensive and systematic survey of salient object detection based on RGB images, RGB-D/T (Depth/Thermal) images, and light field images in the past five years. Firstly, the task characteristics and research difficulties of the three research branches are analyzed. Then the research technical route of each branch is expounded and the advantages and disadvantages are analyzed. At the same time, the mainstream datasets and common performance evaluation indexes of three kinds of research branches are introduced. Finally, possible future research trends are prospected.

    参考文献
    相似文献
    引证文献
引用本文

孙涵,刘译善,林昱涵.基于深度学习的显著性目标检测综述[J].数据采集与处理,2023,38(1):21-50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-06-01
  • 最后修改日期:2022-10-02
  • 录用日期:
  • 在线发布日期: 2023-01-25