压缩感知中提升测量矩阵稀疏性的等效字典优化设计
作者:
作者单位:

西安工业大学基础学院,西安 710021

作者简介:

通讯作者:

基金项目:

陕西省教育厅科研计划(21JK0671);陕西省自然科学基础研究计划(2021JQ-641);国家自然科学基金(12031003, 11771347)。


Optimization of Equivalent Dictionary with Sparsification of Measurement Matrix for Compressed Sensing
Author:
Affiliation:

School of Sciences, Xi'an Technological University, Xi'an 710021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在压缩感知中,可以通过减小等效字典(测量矩阵和稀疏字典的乘积)的互相干性值来提升稀疏重构算法的稳定性。已有的优化设计方法在减小等效字典互相干性值的同时没有考虑如何提高信号重构的计算效率,为了克服该问题,在稀疏字典固定的情形下,本文提出了一个关于测量矩阵的有约束光滑优化问题,其中第1个约束要求等效字典的Gram矩阵具有尽可能小的互相干性值;第2个则利用L1范数来促进测量矩阵的稀疏性。然后,利用收敛的交替投影算法进行求解。数值实验表明:针对图像恢复问题,相对于采用已有优化设计方法得到的等效字典,本文提出的方法显著提高了测量矩阵中的零元素占比,同时使得压缩感知系统具有更高的信号重构精度。

    Abstract:

    The stability of sparse reconstruction algorithms in compressed sensing can be raised by reducing the mutual coherence value of the equivalent dictionary, i.e., the product of the measurement matrix and the sparsifying dictionary. While, the existing optimal design methods do not consider how to improve the efficiency of signal reconstruction when reducing the mutual coherence value. To overcome the problem, a constrained smooth optimization problem about measurement matrix is proposed, in which the first constraint requires the mutual coherence value of the equivalent dictionary to be as small as possible, and the second one uses the L1 norm to facilitate the sparsity of the measurement matrix. Then, a convergent alternating projection algorithm is used to solve it. The simulation results on natural images show that compared with the equivalent dictionaries obtained by several existing optimal design methods, the proposed method greatly raises the sparsity of measurement matrix and improves the signal recovery accuracy.

    参考文献
    相似文献
    引证文献
引用本文

陈映瞳.压缩感知中提升测量矩阵稀疏性的等效字典优化设计[J].数据采集与处理,2022,37(6):1363-1375

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-09-10
  • 最后修改日期:2021-11-29
  • 录用日期:
  • 在线发布日期: 2022-11-25