基于特征融合的通信辐射源个体识别
作者:
作者单位:

海军工程大学电子工程学院,武汉 430033

作者简介:

通讯作者:

基金项目:


Specific Identification of Communication Emitter Based on Feature Fusion
Author:
Affiliation:

School of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对通信辐射源个体识别研究中单一特征不足以全面表示细微特征差异,从而限制识别率的问题,提出了一种基于特征融合的通信辐射源个体识别方法。该方法首先对原信号进行短时傅里叶变换和双谱变换,提取时频特征和双谱特征,结合小波融合技术进行特征融合,最后使用残差神经网络挖掘信号隐含的深层次特征,完成分类识别。实验结果表明,对于模拟信号源发射的短波通信信号,经过特征融合后的识别效果相较于使用单一特征方法有更高的识别准确率,并且在低信噪比的情况下仍有较好的识别效果。

    Abstract:

    Since a single feature is not enough to comprehensively represent the subtle feature differences and thus limit the recognition rate for specific identification of communication emitter, a method of specific identification of communication emitter based on feature fusion is proposed. Firstly, the short-time Fourier transform and bispectrum transform are applied to the original signal to extract time-frequency features and bispectrum features. Secondly, the wavelet fusion technology is integrated to carry out feature fusion. Finally, the residual neural network is used to mine the hidden deep features of the signal to complete classification and recognition. Experimental results show that compared with the single feature method, the recognition effect of the short wave communication signal transmitted by analog signal source after feature fusion has higher recognition accuracy, and it has better recognition effect under the condition of low signal-to-noise ratio(SNR).

    参考文献
    相似文献
    引证文献
引用本文

刘志文,陈旗,郑恒权,满欣.基于特征融合的通信辐射源个体识别[J].数据采集与处理,2022,37(6):1280-1287

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-20
  • 最后修改日期:2022-08-19
  • 录用日期:
  • 在线发布日期: 2022-11-25