改进GA-BP神经网络的无线信道预测方法
作者:
作者单位:

1.西南科技大学信息工程学院,绵阳 621000;2.南洋理工大学电气与电子工程学院,新加坡 639798

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61771410);西南科技大学研究生创新基金(20ycx0057)。


Wireless Channel Prediction Method Based on Improved GA-BP Neural Network
Author:
Affiliation:

1.College of Information Engineering, Southwest University of Science and Technology, Mianyang 621000,China;2.School of Electronics and Information Engineering, Nanyang Technological University, Singapore 639798,Singapore

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    无线信道建模与仿真中,实现一种高效率、高准确性的无线信道预测方法是具有非常重要意义的。针对该需求,提出一种基于多种群遗传算法(Multi-population genetic algorithm, MPGA)-反向传播(Back propagation, BP)神经网络的无线信道预测方法。该方法通过改进遗传算法,优化BP神经网络中神经元的权值和阈值,以此改善BP神经网络预测精度差的问题,从而极大提高了BP神经网络的预测性能。将射线跟踪算法的理论值和BP神经网络结合,实现更高效的无线信道预测方法。通过对比遗传算法(Genetic algorithm, GA)-BP神经网络模型和MPGA-BP神经网络模型的预测误差,发现MPGA-BP神经网络模型的预测结果优于GA-BP神经网络模型,证明了所提出无线信道预测方法具有良好的精确度,可以更高效地进行无线信道预测。

    Abstract:

    In wireless channel modeling and simulation, it is of great significance to realize a high-efficiency and high-accuracy wireless channel prediction method. Aiming at this request, a wireless channel prediction method based on multi-population genetic algorithm-back propagation (MPGA-BP) neural network is proposed. This method optimizes the structure parameters of BP neural network by improving the genetic algorithm, thereby improving the problem of poor prediction accuracy of the BP neural network and greatly improving the prediction performance of the BP neural network. In this paper, the theoretical value of ray tracing algorithm is combined with BP neural network to realize a more efficient wireless channel prediction method. By comparing the prediction errors of the genetic algorithm (GA)-BP neural network model and the MPGA-BP neural network model, it is found that the prediction results of the MPGA-BP neural network model are better than the GA-BP neural network model, which proves that the proposed wireless channel prediction method has good accuracy. Therefore, the wireless channel prediction can be performed more efficiently.

    参考文献
    相似文献
    引证文献
引用本文

王智宁,江虹,彭潇祺.改进GA-BP神经网络的无线信道预测方法[J].数据采集与处理,2022,37(6):1268-1279

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-01-26
  • 最后修改日期:2022-08-30
  • 录用日期:
  • 在线发布日期: 2022-11-25