Improvement of Cascaded Channel Estimation for IRS Assisted mmWave MIMO Communication
Author:
Affiliation:
College of Information & Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
摘要:
为改善智能反射表面(Intelligent reflective surface,IRS)辅助的毫米波多输入多输出(Multiple-input multiple-output,MIMO)级联信道的估计精度和收敛速度,基于平行因子(Parallel factor,PARAFAC)分解模型,把常规的双线性交替最小二乘(Bilinear alternating least squares,BALS)算法改进为带松弛因子的ω-BALS算法和正则化的T-BALS,加快了收敛速度和算法稳定性。当基站、IRS元件或用户侧的阵列天线数目较大时,提出改进的奇异值(Singular value decomposition,svd)-BALS算法。该算法通过奇异值分解压缩张量,再利用低维度的核心张量来重构模式n矩阵。仿真结果表明,该算法的归一化均方误差性能有所提高,并且加快了收敛速度。
Abstract:
In order to improve the estimation accuracy and convergence speed of millimeter-wave multiple-input multiple-output (MIMO) cascaded channel assisted by intelligent reflective surface (IRS), the conventional bilinear alternating least squares (BALS) algorithm is improved to ω-BALS algorithm with relaxation factor and regularized T-BALS, to speeds up the convergence speed and stability based on parallel factor (PARAFAC) decomposition. When one of the numbers of array antennas on the base station, IRS element or user side is large, an improved (Singular value decomposition,svd)-BALS algorithm is proposed. The algorithm reconstructs the mode-n matrices by compressing it into a low-dimensional core tensor via singular value decomposition. Simulation results show that the normalized mean squared error performance of the algorithm is improved and the convergence speed is accelerated.