基于卷积神经网络的5G蜂窝网络无线定位方法
作者:
作者单位:

1.上海交通大学电子信息与电气工程学院北斗导航与位置服务上海市重点实验室,上海 200240;2.北京集智数字科技有限公司,北京 100871;3.深圳达实智能股份有限公司,深圳 518057

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61971278,62231010);上海交通大学-龙湖智慧空间联合实验室项目(XM22018);深圳市科技创新委员会承接国家重大科技项目(CJGJZD20210408092601004)。


Wireless Localization Method Based on Convolutional Neural Network Using 5G Cellular Networks
Author:
Affiliation:

1.Shanghai Key Laboratory of Navigation and Location-Based Services, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2.Beijing Jizhi Digital Technology Co.,Ltd, Beijing 100871, China;3.Shenzhen Dashi Intelligent Co., Ltd, Shenzhen 518057, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。

    Abstract:

    Due to the rapid development of 5G cellular network, its coverage will be increasingly better, thus cellular network localization is a very promising technical object for research. This paper is inspired by the fingerprint localization method in wireless localization. Under the premise that the time cost of data collection is similar, a high-speed, high-precision and low-occupancy localization method is accomplished by using the emerging deep learning technology instead of the heavy fingerprint library application and distance calculation in the localization process of fingerprint localization. In this method, a convolutional neural network is built, and the training set is constructed by selecting the appropriate input data format based on the amount of features, such as received signal intensity indication, phase and direction of arrival, of the 5G antenna signal. The trained convolutional neural network can replace the huge fingerprint library in fingerprint localization, which is very beneficial to achieve localization directly in 5G mobile devices. In addition, although convolutional neural networks consume a lot of time during the training process, the classification and localization performed after the training is completed with high speed, which can guarantee the real-time implementation of localization. The trained convolutional neural network in this paper takes up less than 0.5 MB of space for weights and biases, and is able to achieve a localization accuracy rate of 95% and an average localization accuracy of 0.1 m in the real-world environment.

    参考文献
    相似文献
    引证文献
引用本文

熊星月,何迪,何至军,周志成.基于卷积神经网络的5G蜂窝网络无线定位方法[J].数据采集与处理,2022,37(6):1228-1245

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-20
  • 最后修改日期:2022-07-03
  • 录用日期:
  • 在线发布日期: 2022-11-25