电磁频谱空间射频机器学习及其应用综述
作者:
作者单位:

南京航空航天大学电磁频谱空间认知动态系统工业和信息化部重点实验室,南京211106

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2020YFB1807602、2020YFB1807600);国家自然科学基金(62071223、62031012);中国科协青年人才托举工程。


Survey on Theory and Applications of Radio Frequency Machine Learning for Electromagnetic Spectrum Space
Author:
Affiliation:

Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电磁频谱空间中频谱资源日益稀缺的问题,新兴的射频机器学习旨在结合电磁频谱领域知识,设计专门的机器学习模型,具有快速、小样本甚至零样本、可解释性和高性能的优势。按照五层网络结构,从物理层、数据链路层、网络层、传输层和应用层出发,本文对已有的射频机器学习在无线通信中具体应用的最新成果进行归类分析。同时,在现有成果基础上,通过对数据驱动和知识驱动的相互作用关系,总结了4种射频机器学习框架(串行/并行/耦合/反馈双驱动框架)。最后,为了促进射频机器学习的研究和实际应用,本文讨论了关键挑战和开放性问题。

    Abstract:

    For the problem that spectrum resources is increasingly scare in electromagnetic spectrum space, the radio frequency machine learning (RFML) is purposed to design special machine learning models by introducing domain knowledge. It has the advantages of fast, few sample or even zero sample, interpretability and high performance. The state-of-the-art RFML in wireless communication is analyzed from the five layers, which are physical layer, data link layer, network layer, transmission layer and application layer. Moreover, based on the existing achievements, four RFML frameworks (serial/parallel/coupled/feedback dual-driven framework) are summarized by the interaction relationship of the data-driven model and the knowledge-driven model. Finally, the key challenges and open issues are identified and elaborated to facilitate the RFML research and practical applications.

    参考文献
    相似文献
    引证文献
引用本文

周福辉,张子彤,丁锐,徐铭,袁璐,吴启晖.电磁频谱空间射频机器学习及其应用综述[J].数据采集与处理,2022,37(6):1179-1197

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-08-09
  • 最后修改日期:2022-11-03
  • 录用日期:
  • 在线发布日期: 2022-11-25