基于时序分析的电网合并单元电平预测
作者:
作者单位:

1.中国南方电网有限责任公司超高压输电公司广州局,广州 510663;2.南京南瑞继保电气有限公司,南京 211102;3.南京航空航天大学计算机科学与技术学院,南京211106

作者简介:

通讯作者:

基金项目:

江苏省自然科学基金(BK20201292); 江苏高校“青蓝工程”项目。


Electrical Level Prediction of Power Grid Merging Unit Based on Time Series Analysis
Author:
Affiliation:

1.Guangzhou Bureau of EHV Transmission Company of China Southern Power Grid Co. Ltd., Guangzhou 510663,China;2.NR Electric Co. Ltd., Nanjing 211102,China;3.College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    合并单元设备监控依赖于现场工作人员记录、实践经验以及预设告警阈值,缺少对系统监视数据的分析和挖掘,不能实现设备状态预测。鉴于此,根据监视合并单元电平数据的时序性特征,将传统时序模型差分整合移动平均自回归(Autoregressive integrated moving average, ARIMA)和长短期记忆网络(Long short-term memory, LSTM)构建组合模型,并采用蛙跳算法 (Shuffled frog leaping algorithm, SFLA) 进行模型优化。优化后的模型应用在合并单元激光器监视的电平数据预测分析,将ARIMA-LSTM优化组合模型和单一模型进行对比,验证了组合模型比单一模型具有更高的准确度。进一步和其他组合模型做对比实验,实验结果表明,组合模型经过SFLA优化后均优于其他组合模型,能够更好挖掘数据中的隐藏信息和趋势,提高时序数据预测精度和故障排查效率。将SFLA优化的组合ARIMA-SVM模型和ARIMA-LSTM模型对比,实验结果表明,所提出的ARIMA-LSTM模型优于ARIMA-SVM模型,可以更好地分析和掌握设备状态信息,实现对合并单元设备的电平数据预测。

    Abstract:

    The equipment monitoring of the merging unit relies on on-site staff records, practical experience and preset alarm threshold, and the lack of analysis and mining of the system monitoring data makes it impossible to realize the device state prediction. In view of this, according to the timing characteristics of the level data of the monitoring merge unit, a combined model of the traditional timing model of autoregressive integrated moving average (ARIMA) and long short-term memory(LSTM) is constructed and optimized by using shuffled frog leaping algorithm(SFLA). The optimized model is applied to the level data prediction analysis of the combined unit laser monitoring. The comparison of the ARIMA-LSTM optimized combination model with the single model verifies that the former has higher accuracy than the latter. Further comparison experimental results show that the combined model is superior to the other combined models after the SFLA algorithm optimization, which can better mine the hidden information and trend in the data, improving the accuracy of time series data prediction and the efficiency of fault troubleshooting. By comparing the combined ARIMA-SVM model and the proposed ARIMA-LSTM model, experimental results show that the proposed ARIMA-LSTM model is superior to the ARIMA-SVM model, and it can better analyze and grasp the device state information, and realize the level data prediction of the merging unit equipment.

    参考文献
    相似文献
    引证文献
引用本文

张朝辉,罗炜,林康照,秦冠军,金岩磊,丁笠,周宇.基于时序分析的电网合并单元电平预测[J].数据采集与处理,2022,37(5):1169-1178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-09-09
  • 最后修改日期:2020-12-15
  • 录用日期:
  • 在线发布日期: 2022-09-25