改进的自步深度不完备多视图聚类
作者:
作者单位:

1.华南农业大学数学与信息学院,广州 510642;2.广州市智慧农业重点实验室,广州 510642

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61976097);广州市智慧农业重点实验室(201902010081)。


Improved Self-paced Deep Incomplete Multi-view Clustering
Author:
Affiliation:

1.College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China;2.Guangzhou Key Laboratory of Intelligent Agriculture, Guangzhou 510642, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着数据量的增大,多视图聚类中出现带有缺失视图数据的情况愈发常见,此问题被称为不完备多视图聚类,而引入深度模型进行聚类通常可以获得比浅层模型更为出色的表现。本文提出一种新颖的深度不完备多视图聚类模型,称为改进的自步深度不完备多视图聚类。在该模型中,充分考虑多视图数据之间的互补性,利用基于多视图特性的最近邻填充方案将缺失视图补全。使用多个自编码器分别获取多个视图数据的低维潜在特征,同时引入图嵌入策略保持潜在特征之间的几何结构。运用一致性原则将来自不同的视图潜在特征融合以获得一致潜在特征,在此基础上运用自步学习的方法来增强聚类效果。实验结果表明,对比现有的不完备多视图聚类模型,本文模型可以更加灵活且高效地应对各种不完备多视图聚类情况,提升了不完备多视图聚类的鲁棒性与表现效果。

    Abstract:

    With the increase of the volume of data, multi-view clustering with missing view data is becoming progressively common, which is regarded as the incomplete multi-view clustering. Powered by the development of deep learning models, clustering models introduced deep learning can normally get more outstanding performance than shallow models. A novel deep incomplete multi-view clustering model is proposed, which is called improved self-paced deep incomplete multi-view clustering. In this model, the complementarity of multi-view data is fully considered, and the missing views are completed by the nearest neighbor imputation scheme based on multi-view data characteristics. Multiple encoders are exerted to obtain the low-dimensional potential features of multiple views. Meanwhile, the graph embedding strategy is introduced to maintain the geometric structure among the potential features. The consistency principle is exerted to fuse the potential features from different views to obtain consistent potential features. Experimental results indicate that, compared with the existing incomplete multi-view clustering models, our model can deal with various incomplete multi-view clustering more flexibly and efficiently, thus improving the robustness and performance of incomplete multi-view clustering.

    参考文献
    相似文献
    引证文献
引用本文

崔金荣,黄诚.改进的自步深度不完备多视图聚类[J].数据采集与处理,2022,37(5):1036-1048

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-10-24
  • 最后修改日期:2022-01-26
  • 录用日期:
  • 在线发布日期: 2022-09-25