一种基于邻域近似精度的离群点检测方法
作者:
作者单位:

1.四川师范大学计算机科学学院,成都610068;2.四川师范大学数学科学学院,成都 610068

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61673285); 四川省青年科技基金(2017JQ0046);四川省教育厅自然科学基金(15ZB0029)。


An Outlier Detection Method Based on Neighborhood Approximate Accuracy
Author:
Affiliation:

1.School of Computer Science, Sichuan Normal University, Chengdu 610068, China;2.School of Mathematical Sciences, Sichuan Normal University, Chengdu 610068, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对混合属性离群点检测问题,提出基于邻域近似精度的混合属性离群点检测方法。首先,定义异构邻域关系度量来表示混合数据之间的近邻性。然后,定义一种特定的邻域近似精度来构建邻域粒离群度。进而,定义基于邻域近似精度的离群因子及提出基于邻域近似精度的离群点检测(Nighborhood approximation accuracy-based outlier detection, NAAOD)。最后,用UCI数据集对NAAOD算法的有效性进行了验证。理论研究和实验结果均表明,NAAOD算法对混合属性离群点检测是有效的。

    Abstract:

    Aiming at the problem of outlier detection of mixed attributes,this paper proposes a method for outlier detection of mixed attributes based on neighborhood approximate accuracy. First, a heterogeneous neighborhood relationship metric is defined to represent the proximity between mixed data. Then, a specific neighborhood approximation accuracy is defined to construct the neighborhood grain outliers. Further, a neighborhood approximation accuracy-based outlier factor is defined and a neighborhood approximation accuracy-based outlier detection (NAAOD) algorithm is proposed. Finally,the effectiveness of the NAAOD algorithm is evaluated using the UCI dataset. Theoretical research and experimental results show that the NAAOD algorithm is effective for detecting outliers with mixed attributes.

    参考文献
    相似文献
    引证文献
引用本文

张玉婷,冯山.一种基于邻域近似精度的离群点检测方法[J].数据采集与处理,2022,37(5):1018-1025

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-08-05
  • 最后修改日期:2021-05-06
  • 录用日期:
  • 在线发布日期: 2022-09-25