深度学习在有限视角稀疏采样光声图像重建中的应用
作者:
作者单位:

1.华北电力大学电子与通信工程系,保定 071003;2.华北电力大学河北省电力物联网技术重点实验室,保定 071003

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62071181)。


A Survey on Application of Deep Learning in Photoacoustic Image Reconstruction from Limited-View Sparse Data
Author:
Affiliation:

1.Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;2.Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    光声成像(Photoacoustic imaging, PAI)是一种多物理场耦合的新型功能成像技术,高质量图像重建是提高成像精度的关键。当探测器采集的光声信号数据不完备时,若采用标准重建方法(如反投影、时间反演和延迟求和等)会导致图像质量以及成像深度的下降。迭代重建算法可在一定程度上解决此问题,但存在计算成本高、需合理选择正则化方法等缺点。近年来,深度学习已经成为医学成像领域的首选方法,其在高效率重建高质量图像方面展现出了巨大潜力。本文对深度学习在有限角度稀疏采样光声图像重建中的应用进展进行总结,对主要方法进行分类归纳,并讨论不同方法的优势和不足。

    Abstract:

    Photoacoustic imaging (PAI) is a newly emerging hybrid functional imaging modality. High-quality image reconstruction is the key to improve the imaging accuracy. Incomplete photoacoustic(PA) measurements usually lead to the reduction in the imaging depth and the quality of images which are rendered by using conventional reconstruction techniques such as back projection (BP), time reversal (TR), and delay and sum (DAS). The iterative algorithms are capable of solving this issue to a certain extent at the cost of high computational burden and a properly selected regularization tool. In recent years, deep learning (DL) has exhibited promising performances in the field of medical imaging. It has also shown great potential in reconstructing images with high quality and high efficiency. This paper provides a survey on PA image reconstruction from sparely sampled data in a limited view based on DL. The current methods are summarized and classified, and their advantages and limits are also discussed.

    参考文献
    相似文献
    引证文献
引用本文

孙正,候英飒.深度学习在有限视角稀疏采样光声图像重建中的应用[J].数据采集与处理,2022,37(5):971-983

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-08-13
  • 最后修改日期:2021-12-14
  • 录用日期:
  • 在线发布日期: 2022-09-25