基于异步芯片的多模态神经生理信号采集技术
作者:
作者单位:

1.北京理工大学医学技术学院,北京 100081;2.兰州大学信息科学与工程学院,兰州 730000

作者简介:

通讯作者:

基金项目:

北京理工大学青年学者启动经费;中央高校基本科研业务费 (lzujbky-2021-kb26);国家重点研发计划(2019YFA0706200);国家自然科学基金 (61632014, 61627808);脑科学与类脑研究(科技创新2030重大专项)-抑郁症精准医学研究队列基金 (2021ZD0200601)。


Acquisition Technology of Multimodality Neurophysiological Signals Based on Asynchronous Chip
Author:
Affiliation:

1.School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China;2.School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    心理生理计算目前主要基于同步芯片的神经生理信号采集技术进行分析研究,而人体神经生理活动表征具有异步属性,同步采集技术无法精准、实时和高效地刻画人体神经生理信号活动规律。如何低功耗、低冗余、实时精准地采集异步多模态神经生理信号成为心理生理计算首要解决的难题。针对这一难题,本文以研究微观神经生理活动规律和宏观心理生理活动为目的,解决异步多模态生理信息采集方案和相匹配的被动生理信号传感技术的设计难点,设计研发了首款异步生理信号处理芯片,该芯片具备低功耗、高精度时序、高性能计算和抗干扰的特点。最后展望了该芯片在脑科学和类脑计算领域的应用前景。

    Abstract:

    Most of psychophysiological computing (PPC) studies are under the experimental environments of synchronization theory hypothesis, however neurophysiological representations have asynchronous properties, which cannot be precisely and effectively described in real time using synchronized recording technology. It is being the first issue of PPC to resolve how to recode these asynchronous multi-modality neurophysiological activities with low-power, low-redundancy, real-time and accurate. For this issue, this study focuses on the goals of microscopic neurophysiological activities and macroscopic psychological variables, resolves the design challenges of asynchronous multimodality physiological information recording scheme and corresponding passive physiological signals sensing technology, and designs and develops the first asynchronous physiological process unit (PPU). The PPU has the characteristics of low power consumption, high time series precision, high computing performance and strong anti-interference ability. Finally,we look forward to the future of PPU applied in the research area of brain science and brain-like computing.

    参考文献
    相似文献
    引证文献
引用本文

朱立贤,田福泽,董群喜,赵庆林,何安平,郑炜豪,胡斌.基于异步芯片的多模态神经生理信号采集技术[J].数据采集与处理,2022,37(4):848-859

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-03-01
  • 最后修改日期:2022-07-07
  • 录用日期:
  • 在线发布日期: 2022-07-25