基于深度学习的癫痫脑电信号分类
作者:
作者单位:

江苏理工学院电气信息工程学院生物信息与医药工程研究所,常州 213001

作者简介:

通讯作者:

基金项目:


EEG Signal Classification of Epilepsy Based on Deep Learning
Author:
Affiliation:

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    有效地分析处理癫痫脑电信号并对其准确分类可以进一步完善癫痫检测问题。因此,各种深度学习方法逐渐应用到该问题中,如使用BiLSTM模型对癫痫脑电的一维时间序列数据进行处理。为进一步提高癫痫脑电分类的准确率,本文将癫痫脑电的一维时间序列数据转换为二维图像,使用EfficientNetV2模型来实现癫痫检测的二分类。同时,引入梯度加权类激活映射(Gradient-weighted class activation mapping, Grad-CAM)对二维图像分类进行可视化分析。对德国伯恩大学脑电癫痫脑电信号数据集的预处理版本进行分类实验,EfficientNetV2模型的准确率达到了98.69%,优于BiLSTM模型。结果表明,EfficientNetV2模型可以有效通过二维脑电图像实现癫痫脑电分类,而且分类准确率更高。

    Abstract:

    Effectively analyzing, processing and accurately classifying epileptic electroencephalographic (EEG) signals can further improve the problem of epilepsy detection. Therefore, various deep learning approaches have been gradually applied to this problem, such as using the BiLSTM model to process the 1D time series data of epileptic EEG. To further improve the accuracy of epileptic EEG classification, the 1D time series data of epileptic EEG is converted into 2D images and the EfficientNetV2 model is used to achieve binary classification for epilepsy detection in this paper. At the same time, the gradient-weighted class activation mapping (Grad-CAM) is introduced for visual analysis of 2D images classification. By performing classification experiments on a pre-processed version of the epilepsy EEG signal dataset from the University of Bern, Germany, the EfficientNetV2 model achieves the accuracy of 98.69%, which is better than the BiLSTM model. The result indicates that the EfficientNetV2 model can effectively achieve epileptic EEG classification by 2D EEG images with higher classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

徐晴,葛成,蔡标,陆翼,常珊.基于深度学习的癫痫脑电信号分类[J].数据采集与处理,2022,37(4):787-797

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-09
  • 最后修改日期:2022-06-25
  • 录用日期:
  • 在线发布日期: 2022-07-25