基于自适应采样与Dense机制的颅内动脉瘤血管多结构分割
作者:
作者单位:

1.北京理工大学生命学院, 北京 100081;2.应脉医疗科技(上海)有限公司, 上海 200120;3.首都医科大学附属北京天坛医院神经介入中心, 北京 100070;4.北京理工大学医学技术学院, 北京 100081

作者简介:

通讯作者:

基金项目:

北京市自然科学基金 (Z190014, L192010); 国家重点研发计划 (2018AAA0102600)。


Multi-structure Segmentation of Intracranial Vessels with Aneurysms Based on Adaptive Sampling and Dense Mechanism
Author:
Affiliation:

1.School of Life Science, Beijing Institute of Technology, Beijing 100081, China;2.Enlight Medical Technology (Shanghai) Co. Ltd., Shanghai 200120, China;3.Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;4.School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    颅内动脉瘤是一种具有较高致死和致残率的常见脑血管疾病。近年来,临床对基于影像的智能化和精准化的疾病诊断策略提出了迫切需求,其中血管及病灶的精准分割是其重要基础。本文提出了一种新型的颅内动脉瘤血管多结构分割框架,利用血管先验灰度特征建立了自适应的数据采样方法,并设计了一种基于Dense机制的深度网络模型实现血管分割。本文收集了135例颅内动脉瘤患者(年龄分布:54.7±12.7岁, 75名男性)的飞行时间磁共振血管影像进行模型的训练和测试。相比于原空间采样和图像压缩方法(平均Dice相似性系数:0.829和0.780),自适应采样方法可以明显提升血管分割的精度(平均Dice相似性系数:0.858);与经典的3D UNet、SegNet和DeepLabV3+网络相比(平均Dice相似性系数:0.854,0.824和0.800),基于Dense机制的网络能够利用更少的计算资源实现更优的分割效果,对于不同位置和大小的动脉瘤也表现出良好的分割鲁棒性。

    Abstract:

    Intracranial aneurysm is a common cerebral vascular disease with a relatively high lethiferous and disable rate. An image-based intelligent and accurate diagnosis method of the disease is urgently needed by the clinic in recent years, for which the accurate segmentation of the vessels and aneurysms is very essential. In this work, we present a novel segmentation framework for the multi-structure intracranial vessels with aneurysms. An adaptive image sampling method is designed using the prior gray-level vascular features, and a Dense mechanism-based network is proposed for the vessel segmentation. Time-of-flight magnetic resonance angiography images of 135 patients (age: 54.7±12.7, 75 males) with intracranial aneurysms are collected for training and testing the framework. Compared with the sampling in the original space and image compression (mean DSC: 0.829 and 0.780), the adaptive sampling can obviously improve the accuracy of the vessel segmentation (mean DSC: 0.858). The Dense mechanism-based network can achieve better segmentation result while using less calculation space than the traditional models of 3D UNet, SegNet and DeepLabV3+ (mean DSC: 0.854,0.824 and 0.800). It also shows good robustness for the segmentation of aneurysms with various locations and sizes.

    参考文献
    相似文献
    引证文献
引用本文

张栩阳,姚韵楚,石悦,佟鑫,梁昕语,童薪宇,刘爱华,陈端端.基于自适应采样与Dense机制的颅内动脉瘤血管多结构分割[J].数据采集与处理,2022,37(4):766-775

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-07
  • 最后修改日期:2022-07-01
  • 录用日期:
  • 在线发布日期: 2022-07-25