基于稀疏编码的弥散微循环模型参数估计神经网络
作者:
作者单位:

1.浙江大学生物医学工程与仪器科学学院,杭州 310027;2.浙江大学医学院附属妇产科医院,杭州 310003;3.北京理工大学集成电路与电子学院,北京 100081

作者简介:

通讯作者:

基金项目:

国家科技部政府间国际科技创新合作重点专项(2018YFE0114600);国家自然科学基金(61801424, 81971606, 82122032);浙江省科技厅资助项目(202006140, 2022C03057)。


Neural Network for Parpameter Estimation of Intravoxel Incoherent Motion Based on Sparse Coding
Author:
Affiliation:

1.College of Biomedical Engineering & Instrument Science, Zhejiang University,Hangzhou 310027, China;2.Department of Radiology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;3.School of Integrated Circuits and Electronics, Beijing Institute of Technology,Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    弥散磁共振成像(Diffusion magnetic resonance imaging, dMRI)是一种重要的无创检测生物组织微观结构的医学成像工具,其中弥散微循环模型(Intravoxel incoherent motion ,IVIM)是已被广泛用于分离组织水扩散和微血管血流运动的弥散磁共振成像模型。求解弥散微循环模型参数的传统方法依赖于从多b值扩散弥散磁共振成像数据(通常≥10个b值)中拟合双指数模型,这需要一个相对较长的采集时间,对于体部弥散微循环模型成像是一个挑战。深度学习方法可以使用q空间数据的一个子集进行弥散磁共振成像模型参数估计,从而加速弥散磁共振成像的采集。然而,常见的基于卷积神经网络的深度学习与生物物理模型无关,因此,网络输出结果缺乏可解释性。本文将稀疏编码与深度学习相结合,提出了一种基于稀疏编码深度学习网络的弥散微循环模型参数估计方法。它利用了深度网络的表达优势,同时结合稀疏化表达的双指数模型来估计胎盘的弥散微循环模型参数,相比于其他算法,本文所拟的算法实现了更高的参数估计准确率和泛化能力。

    Abstract:

    Diffusion magnetic resonance imaging (dMRI) is an important medical imaging tool for the non-invasive detection of microstructures in biological tissues. Among others, intravoxel incoherent motion (IVIM) is a widely used dMRI model to separate diffusion and microvascular perfusion. Conventional methods to resolve IVIM parameters rely on fitting a biexponential model from multi-b-value dMRI data (typically ≥10 b-values), which requires a relatively long acquisition time. Such an acquisition is challenging for IVIM imaging of the body, such as placental IVIM, which is strongly influenced by both fetal and maternal motions. Deep learning models can accelerate the dMRI acquisition using a subset of the q-space data. However, common deep learning based on convolutional neural networks is not relevant to biophysical models and, therefore, the outputs of the network are difficult to interpret. Here, this work combines sparse coding with deep learning to develop a sparse coding based deep neural network for the IVIM parameter estimation that takes advantage of the feature representation of deep networks while incorporating a potential bi-exponential model to estimate the microcirculation parameters of the placenta. Compared with other algorithms, the proposed algorithm demonstrates advantages in accuracy and generalizability.

    参考文献
    相似文献
    引证文献
引用本文

郑天舒,颜国辉,叶初阳,吴丹.基于稀疏编码的弥散微循环模型参数估计神经网络[J].数据采集与处理,2022,37(4):747-756

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-08
  • 最后修改日期:2022-07-06
  • 录用日期:
  • 在线发布日期: 2022-07-25