基于特征增强金字塔网络的阿尔茨海默症早期诊断研究
作者:
作者单位:

1.郑州大学网络空间安全学院,郑州 450002;2.嵩山实验室,郑州 450052;3.河南省人民医院病理科,郑州 450003;4.郑州大学第一附属医院磁共振科,郑州 450003

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年科学基金(62006210、62001284);2020 年度河南省重大公益专项(201300210500);河南省高等学校重点科研项目(21B520018);郑州大学高层次人才科研启动基金(32340306)。


Early Diagnosis of Alzheimer’s Disease Based on Feature Enhanced Pyramid Network
Author:
Affiliation:

1.School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China;2.Songshan Laboratory, Zhengzhou 450052, China;3.Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou 450003, China;4.Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    阿尔茨海默症(Alzheimer’s disease, AD)作为一种不可逆转的神经退行性疾病,能在其发病初期进行干预治疗对病情的控制和改善具有重要意义。近年来,研究者广泛地使用深度学习方法对AD的核磁共振成像(Magnetic resonance imaging, MRI) 进行分析并做出早期诊断。但AD早期的脑部结构变化与正常人差别较小,目前单一尺度的分析方法难以有效捕捉到这些细小差别的特征。针对以上问题,本文提出特征增强金字塔网络(Feature enhanced pyramid network, FEPN)进行AD的MRI早期诊断,通过设计的浅层特征重提取模型利用上下文信息补充高层特征,并计算融合权重指导高低层特征图的融合,增强了上下文信息交互和多尺度特征融合的匹配度。对比实验采用Kaggle公开的Alzheimer数据集对该方法进行验证,实验结果表明,相比于其他同类方法,FEPN有效提升了4种AD脑状态(非痴呆、非常轻度痴呆、轻度痴呆、中度痴呆)MRI的分类精度。

    Abstract:

    Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, whose early medical intervention is of great significance to control and improve the condition. In recent years, deep learning methods have been widely used by researchers to analyze magnetic resonance imaging (MRI) of AD for early diagnosis. However, the changes of brain structure are less different from those of normal people in the early stage, and the existing single-scale analysis methods are difficult to capture these subtle differences. Aiming at the above problem, this paper proposes a feature enhanced pyramid network (FEPN) for early diagnosis of AD. The high-level features are supplemented by the contextual information extracted from the designed shallow feature re-extraction, and the fusion weights are calculated to guide the fusion of high-level and low-level feature maps, which enhance the interaction of contextual information and the matching degree of multi-scale feature fusion. The Alzheimer datasets published by Kaggle are employed to conduct comparison experiments to verify the performance of the proposed approach. The comparison experiment employs the Alzheimer dataset published by Kaggle to verify the performance. Compared with related methods, FEPN achieves the SOTA classification accuracy of MRI of four AD brain states (non-demented, very mild demented, mild demented, moderate demented).

    参考文献
    相似文献
    引证文献
引用本文

石磊,彭少康,张亚萌,赵国桦,高宇飞.基于特征增强金字塔网络的阿尔茨海默症早期诊断研究[J].数据采集与处理,2022,37(4):727-735

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-05-10
  • 最后修改日期:2022-06-23
  • 录用日期:
  • 在线发布日期: 2022-07-25