跨异构设备的室内Wi-Fi指纹定位方法
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海 200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金(51705324)。


Indoor Wi-Fi Fingerprint Location Method Across Heterogeneous Devices
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于Wi-Fi位置指纹的室内定位中,采用异构设备在同一位置、同一时间采集的无线信号接收强度(Received signal strength indicator,RSSI)存在差异,使得离线指纹库与不同用户在线采集的信号难以兼容而影响定位精度。针对该问题,本文提出一种适应异构设备的定位算法。该方法首先通过接入点(Access point, AP)选择,构建信号稳定的离线指纹数据库,再使用普氏分析法(Procrustes analysis, PA)对指纹库标准化,消除异构设备引入的信号差异。在线阶段采用余弦相似度(Cosine similarity, CS)算法得到目标的位置估计。在2种典型室内环境中利用4台手机测试了所提方法的定位性能,并分析了影响定位性能的因素。实验结果表明,所提方法在2种室内环境中的平均定位误差分别为2.96 m和2.29 m,相比较加权K近邻(Weight K-nearest neighbor, WKNN)算法定位精度分别提高了21.3%和21.6%。

    Abstract:

    In the indoor location based on Wi Fi location fingerprint, the received signal strength indicators (RSSI) collected by heterogeneous devices at the same location and time are different, which makes the offline fingerprint database incompatible with the online signals collected by different users, thus affecting the location accuracy. To solve this problem, this paper proposes a localization algorithm suitable to heterogeneous devices. In this method, the offline fingerprint database with stable signals is constructed through the selection of access point (AP), and then the fingerprint database is standardized by procrustes analysis (PA) to eliminate the signal difference introduced by heterogeneous devices. In the online stage, the cosine similarity (CS) algorithm is used to obtain the position estimation of the target. The positioning performance of the proposed method is tested with four mobile phones in two typical indoor environments, and the factors affecting the positioning performance are analyzed. The experimental results show that the average positioning errors of the proposed method in the two indoor environments are 2.96 m and 2.29 m, which is 21.3% and 21.6% higher than those of the Weight K-nearest neighbor (WKNN) algorithm, respectively.

    参考文献
    相似文献
    引证文献
引用本文

金施嘉珞,乐燕芬,许远航.跨异构设备的室内Wi-Fi指纹定位方法[J].数据采集与处理,2022,37(3):703-714

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-10-23
  • 最后修改日期:2022-04-19
  • 录用日期:
  • 在线发布日期: 2022-05-25