全变分极端通道先验的盲图像去噪去模糊
作者:
作者单位:

1.贵州民族大学数据科学与信息工程学院,贵阳 550025;2.贵州民族大学工程技术人才实践训练中心,贵阳 550025;3.贵州民族大学信息与数据中心,贵阳 550025

作者简介:

通讯作者:

基金项目:

国家自然科学基金 (62062024);贵州省研究生科研基金(黔教合YJSCXJH(2020)135);贵州省省级科技计划项目(黔科合基础-ZK[2021]一般342)。


Blind Image Denoising and Blurring by Total Variational Extreme Channels Prior
Author:
Affiliation:

1.School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China;2.Engineering Training Center, Guizhou Minzu University, Guiyang 550025, China;3.Information and Data Center, Guizhou Minzu University, Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    图像先验是图像复原中求解不适定问题的关键。针对在图像具有显著噪声时,极端通道先验去模糊算法容易产生振铃伪影和无法抑制噪声的缺点,利用全变分模型可以同时抑制噪声和保护边缘的优势,提出一种有效的全变分极端通道先验的盲图像去噪和去模糊模型。首先,将全变分模型分别引入暗通道和亮通道中,用于保护图像的边缘及消除噪声或振铃伪影;其次,利用半二次分裂技术解决模型的非凸问题和估计潜在的清晰图像;最后,用迭代多尺度盲反褶积估计图像的模糊核。实验结果表明,该算法能够在抑制噪声的同时很好地保护图像的边缘细节和消除振铃伪影。相比近几年具有代表性的其他方法,该模型的鲁棒性、主观视觉效果和客观评价指标均有明显提高。

    Abstract:

    Image prior is the key to solving ill-posed problems in image restoration. Since the extreme channels prior deblurring algorithm easily produces ringing artifacts and is unable to suppress noise when the image has significant noise,we take advantage of the total variation based method that can remove noise while preserving edge features, and propose an effective blind image denoising and deblurring model based on total variation before the extreme channels prior. First of all, we introduce the total variational model in the dark channel and the bright channel to protect the edge of the image and eliminating noise or ringing artifacts. Second, the half quadratic splitting technique is used to solve the non-convex problem of the model and estimate the clear image. Finally, the blur kernel of the image is estimated by the iterative multi-scale blind deconvolution. Experimental results show that the proposed model can effectively protect the edge details of the image and eliminate the ringing artifacts while suppressing the noise. Compared with the representative methods in recent years, the robustness, subjective visual effects and objective evaluation indexes of the model are significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

胡雪,黄成泉,冯润,周丽华,郑兰.全变分极端通道先验的盲图像去噪去模糊[J].数据采集与处理,2022,37(3):643-656

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-05-17
  • 最后修改日期:2021-08-29
  • 录用日期:
  • 在线发布日期: 2022-05-25