基于深度学习的域适应方法综述
作者:
作者单位:

1.南京信息工程大学计算机与软件学院,南京 210044;2.南京信息工程大学数字取证教育部工程研究中心,南京210044

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62176128,61702273);江苏省自然科学基金(BK20170956);模式识别国家重点实验室开放课题(202000007);模式分析与机器智能工业和信息化部重点实验室开放课题(NJ2019010);江苏省青蓝工程项目。


Review on Domain Adaptation Methods Based on Deep Learning
Author:
Affiliation:

1.School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;2.Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    域适应主要应对跨不同数据分布的相似任务决策问题。作为机器学习领域的一个新兴分支,域适应受到了众多的研究和关注。随着近年深度学习的兴起,深度学习和域适应相结合的深度域适应研究得到了更多的关注。尽管已有各种深度域适应方法被提出,却鲜有系统的综述工作发表。为此,本文重点对现有的深度域适应方法进行全面回顾、分析和总结,为相关研究人员提供借鉴和参考。本文主要贡献包括以下方面:首先,对域适应的背景、概念和应用领域进行概括总结。其次,根据模型是否涉及对抗训练机制,将现有深度域适应划分为深度对抗域适应和深度非对抗域适应两大类方法,并逐类回顾和分析。然后,对常用的实验基准数据集进行归类和总结。最后,对现有深度域适应工作存在的问题和不足进行了归纳分析,并讨论了将来的可行研究方向。

    Abstract:

    Domain adaptation mainly deals with similar task decision across different data distributions. As an emerging branch of machine learning, domain adaptation has received much attention. With the rise of deep learning in recent years, the deep domain adaptation paradigm, as a combination of deep learning and traditional domain adaptation, has attracted more and more research. Although a variety of deep domain adaptation methods have been proposed, few systematic reviews have been published. To this end, this paper definitely reviews and analyzes the existing deep domain adaptation work and summarizes them to provide reference for relevant researchers. In conclusion, the main contributions of this work include the following aspects. Firstly, the background, concepts and application fields of domain adaptation are summarized. Secondly, according to whether the model training involves adversarial mechanism, we group the existing deep domain adaptation methods into two categories, such as deep adversarial domain adaptation and deep non-adversarial domain adaptation, and review and analyze them, respectively. Then, the benchmark datasets commonly used in the domain adaptation research are tabulated with profiles. Finally, the issues suffered in the existing deep domain adaptation work are summarized and analyzed, and future research directions are given.

    参考文献
    相似文献
    引证文献
引用本文

田青,朱雅喃,马闯.基于深度学习的域适应方法综述[J].数据采集与处理,2022,37(3):512-541

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-06-22
  • 最后修改日期:2022-03-04
  • 录用日期:
  • 在线发布日期: 2022-05-25