基于Attention-LSTM-Kalman建模的风洞动态流量软测量
作者:
作者单位:

上海理工大学光电信息与计算机工程学院,上海 200093

作者简介:

通讯作者:

基金项目:

国家自然科学基金青年基金(61605114,61703227)。


Soft Measurement of Wind Tunnel Dynamic Flow Based on Attention-LSTM- Kalman Modeling
Author:
Affiliation:

School of Optical-Electrial and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对风洞流量测量中传统静态软测量模型估计精度低、鲁棒性差等问题,提出了注意力机制(Attention mechanism, Attention)、长短时记忆神经网络(Long short-term memory, LSTM)和卡尔曼滤波(Kalman filtering, Kalman)结合的Attention-LSTM-Kalman软测量模型:通过LSTM网络建立静态软测量模型,在此基础上,提出一种基于注意力机制的改进方案,考虑到系统的动态特性,使用卡尔曼滤波动态调整软测量模型输出序列。实验结果表明,静态预测模型LSTM的预测效果优于循环神经网络(Recurrent neural network, RNN)和门控循环单元(Gated recurrent unit, GRU)等模型;基于LSTM、Attention-LSTM和Attention-LSTM-Kalman的3种模型的对比预测测量结果表明,注意力机制能有效提高模型精准度,引入卡尔曼滤波改善了模型的动态测量特性。该模型方案在风洞系统的流量测量验证了其可行性和有效性。

    Abstract:

    Aiming at the problems such as low estimation accuracy and poor robustness of traditional static soft measurement model in wind tunnel flow measurement, an Attention-LSTM-Kalman measurement model combing attention mechanism (Attention), long short-term memory (LSTM) and Kalman filtering (Kalman) is proposed: a static soft-measuring model is established through LSTM network. On this basis, an improved scheme based on attention mechanism is proposed. Considering the dynamic characteristics of the system, Kalman filter is used to dynamically adjust the output sequence of the soft-measuring model. Experimental results show that LSTM is better than recurrent neural network (RNN) and gated recurrent unit (GRU) models. The comparison of the prediction results of the three models based on LSTM, Attention-LSTM and Attention-LSTM-Kalman shows that the attention mechanism could effectively improve the accuracy of the model, and the introduction of Kalman filter improves the dynamic measurement characteristics of the model. The feasibility and effectiveness of the proposed model are verified by the flow measurement in the wind tunnel system.

    参考文献
    相似文献
    引证文献
引用本文

周隽杰,付东翔.基于Attention-LSTM-Kalman建模的风洞动态流量软测量[J].数据采集与处理,2022,37(2):463-470

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-28
  • 最后修改日期:2021-11-04
  • 录用日期:
  • 在线发布日期: 2022-03-25