基于深度受限玻尔兹曼机的个性化推荐算法
作者:
作者单位:

1.玉林师范学院计算机科学与工程学院,玉林537000;2.南宁师范大学计算机与信息工程学院,南宁530299

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61662028)。


Personalized Recommendation Algorithm Based on Depth-Restricted Boltzmann Machine
Author:
Affiliation:

1.School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China;2.College of Computer and Information Engineering, Nanning Normal University, Nanning 530299, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提高个性化推荐系统性能,提出了一种基于深度受限玻尔兹曼机的个性化推荐方法。首先通过提取推荐系统的用户和资源特征构建多层受限玻尔兹曼机(Restricted Boltzmann machine,RBM)网络,从而形成深度受限玻尔兹曼机个性化推荐模型;其次通过可视和隐藏层的边缘概率分布求解待推荐训练样本的最大似然度;然后结合对比散度(Contrast divergence,CD)重构来获得RBM主要参数更新方式,并通过可视和隐藏层的正反向更新,来获得稳定的RBM结构;最后利用计算用户资源评分值实现个性化推荐。实验结果表明,在训练样本稀疏度合理范围内,与常用个性化推荐算法比较,所提方法通过合理控制RBM深度和设置合适的隐藏层节点数,能够获得更优的均方根误差(Root mean squared error,RMSE)性能。

    Abstract:

    To improve the performance of personalized recommendation system, a personalized recommendation method based on depth-restricted Boltzmann machine is proposed. Firstly, by extracting the characteristics of users and resources of the recommendation system, a multi-layer restricted Boltzmann machine (RBM) network is constructed, thus forming a personalized recommendation model of depth-restricted Boltzmann machine. Secondly, the maximum likelihood of the training samples to be recommended is calculated by the marginal probability distribution of visible and hidden layers. Then, combined with contrastive divergence (CD) reconstruction, the main parameter updating mode of RBM is obtained, and the stable RBM structure is obtained by updating the visible and hidden layers in both directions. Finally, the personalized recommendation is realized by calculating the user resource score. Experimental results show that, within the reasonable range of sparsity of training samples, compared with the commonly used personalized recommendation algorithms, the proposed method can obtain better root mean squared error (RMSE) performance by reasonably controlling the depth of RBM and setting the appropriate number of hidden layer nodes.

    参考文献
    相似文献
    引证文献
引用本文

谢妙,邓育林,吕洁.基于深度受限玻尔兹曼机的个性化推荐算法[J].数据采集与处理,2022,37(2):456-462

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-09-24
  • 最后修改日期:2022-01-15
  • 录用日期:
  • 在线发布日期: 2022-03-25