基于可穿戴设备的障碍人群问题行为识别
作者:
作者单位:

1.长安大学信息工程学院,西安 710064;2.西安电子科技大学雷达信号处理国家重点实验室,西安 710071

作者简介:

通讯作者:

基金项目:

中国博士后科学基金(2015M582586);长安大学大学生创新创业训练计划(S202110710222)。


Impaired Behavior Classification for People with Special Needs Based on Wearable Devices
Author:
Affiliation:

1.School of Information Engineering, Chang’an University, Xi’an 710064,China;2.National Lab of Radar Signal Processing, Xidian University, Xi’an 710071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    障碍人群的问题行为给个体、家庭和整个社会带来了沉重的心理压力和经济负担。为此,本文致力于探索利用可穿戴设备内置的9轴运动传感器结合先进的人工智能技术对障碍人群的问题行为进行感知的可行性,以期防止事故发生,降低看护成本。首先,对采集数据进行分析和预处理,提取共108维特征;其次,在特征选择过程中,分别采用原理性分析和随机森林两种方法,划分为3个特征子集,其目的是在保证识别精度的前提下降低时间开销;最后,采用两种验证方法,利用6种分类器进行评价。实验结果表明,特征融合能有效提高分类器的识别率;特征选择能在较低性能损失的前提下,保证分类器的识别率;综合考虑运算开销和识别精度,特征子集3更适用于问题行为识别,轻量梯度提升机(Light gradient boosting machine,LightGBM)具有明显的性能优势,10倍交叉验证的平均识别率可达 93%。

    Abstract:

    The impaired behaviors of people with special needs bring heavy psychological pressure and economic burden to individuals, families and the whole society. This paper aims to explore the possibility of sensing the impaired behaviors of people with special needs by combining advanced AI techniques with wearable device embedded with 9-axis motion sensors to prevent accidents and reduce nursing costs. Firstly, the self-collected data are analyzed and preprocessed to extract the features of 108 dimensions. Secondly, in the process of feature selection, the feature is divided into three feature subsets by using two methods of priori analysis and random forest respectively. The purpose is to reduce the time cost on the premise of ensuring the recognition accuracy. Finally, two validation methods and six classifiers are used for evaluation. Experimental results show that multi-sensor data fusion can greatly improve the recognition rate of the classifier and the feature selection can ensure the recognition rate of the classifier under the premise of low performance loss. Feature subset 3 is more suitable for representing impaired behaviors of people with special needs. The light gradient boosting machine (LightGBM) has an obvious performance advantage, and the average recognition rate of 10-fold cross-verification can reach 93%, which turned out to be more feasible and practical considering both computation cost and classification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

马仑,王瑞平,赵斌,刘鑫,廖桂生,张亚静.基于可穿戴设备的障碍人群问题行为识别[J].数据采集与处理,2022,37(2):279-287

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-06-11
  • 最后修改日期:2021-10-19
  • 录用日期:
  • 在线发布日期: 2022-03-25