基于深度学习的计算机视觉研究新进展
作者:
作者单位:

上海交通大学计算机科学与工程系,上海 200240

作者简介:

通讯作者:

基金项目:


Survey on New Progresses of Deep Learning Based Computer Vision
Author:
Affiliation:

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,深度学习在计算机视觉各个领域中的应用成效显著,新的深度学习方法和深度神经网络模型不断涌现,算法性能被不断刷新。本文着眼于2016年以来的一些典型网络和模型,对基于深度学习的计算机视觉研究新进展进行综述。首先总结了针对图像分类的主流深度神经网络模型,包括标准模型及轻量化模型等;然后总结了针对不同计算机视觉领域的主流方法和模型,包括目标检测、图像分割和图像超分辨率等;最后总结了深度神经网络搜索方法。

    Abstract:

    Deep learning has recently achieved great breakthroughs in some fields of computer vision. Various new deep learning methods and deep neural network models were proposed, and their performance was constantly updated. This paper makes a survey on the new progresses of applications of deep learning on computer vision since 2016 with emphases on some typical networks and models. We first investigate the mainstream deep neural network models for image classification including standard models and light-weight models. Then, we introduce some main methods and models for different computer vision fields including object detection, image segmentation and image super-resolution. Finally, we summarize deep neural network architecture searching methods.

    参考文献
    相似文献
    引证文献
引用本文

卢宏涛,罗沐昆.基于深度学习的计算机视觉研究新进展[J].数据采集与处理,2022,37(2):247-278

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-02-10
  • 最后修改日期:2022-03-01
  • 录用日期:
  • 在线发布日期: 2022-03-25