基于BP神经网络的相控阵雷达多目标跟踪时间资源优化分配方法
作者:
作者单位:

南京航空航天大学电子信息工程学院,南京 211106

作者简介:

通讯作者:

基金项目:

航空科学基金(2017052015,20182007001); 雷达成像与微波光子技术教育部重点实验室(南京航空航天大学)基金。


Optimal Allocation of Time Resources for Phased Array Radar Multi-target Tracking Based on BP Neural Network
Author:
Affiliation:

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对相控阵雷达多目标跟踪下的威胁度等级不同,以目标位置估计的贝叶斯克拉美罗下界(Bayesian Cramer-Rao lower bound,BCRLB)为分配准则,本文建立了一种基于威胁度的多目标跟踪时间资源分配优化模型,该模型以威胁度为基准将待跟踪目标分为两类,不同类别采用不同的时间资源分配方法。由于该模型及优化算法运行耗时巨大,该文还提出了一种基于反向传播(Back propagation,BP)神经网络的多目标跟踪时间资源拟合方法。计算机仿真表明,该模型及方法可以使各目标跟踪维持最佳状态,同时BP神经网络耗时降低2 000多倍。

    Abstract:

    Aiming at the different threat levels under phased array radar multi-target tracking, the Bayesian Cramer-Rao lower bound (BCRLB) of the target position estimation is used as the allocation criterion. The paper establishes a multi-target tracking time resource allocation optimization model based on the threat degree. The model based on the threat degree to track the target can be divided into two categories and different types use different time resource allocation methods. Due to the time-consuming operation and optimization algorithm, this paper also proposes a multi-target tracking time resource fitting method based on back propagation(BP) neural network. Computer simulation shows that the model and the method can keep the target tracking in the best state, and the BP neural network reduces time consumption by more than two thousand times.

    表 2 目标的初始状态参数Table 2 Initial state parameters of the target
    表 3 两种算法运行时耗Table 3 Running time of the two algorithms
    图1 BP神经网络结构Fig.1 BP neural network structure
    图2 BP神经网络拟合流程图Fig.2 BP neural network fitting flowchart
    图3 目标的真实轨迹与预测轨迹Fig.3 Real trajectory and predicted trajectory of target
    图4 优化方案下各目标的BCRLB和RMSEFig.4 BCRLB and RMSE of the each target under optimization scheme
    图5 优化方案和平均分配方案各个目标BCRLBFig.5 BCRLB for each objective of the optimization plan and the average allocation plan
    图6 基于BCRLB的时间分配优化结果Fig.6 Time allocation optimization results based on BCRLB
    图7 基于MI的时间分配优化结果Fig.7 Time allocation optimization results based on MI
    图8 两种方法所得各个目标驻留时间Fig.8 Dwell time of each target obtained by the two methods
    参考文献
    相似文献
    引证文献
引用本文

陶庆,张劲东,陶庭宝,邱旦峰.基于BP神经网络的相控阵雷达多目标跟踪时间资源优化分配方法[J].数据采集与处理,2022,37(1):217-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-02-29
  • 最后修改日期:2020-08-19
  • 录用日期:
  • 在线发布日期: 2022-01-25