基于SSD深度神经网络的航拍图像电力目标检测
作者:
作者单位:

1.国网山东省电力公司,济南 250001;2.国网临沂供电公司,临沂 276000;3.山东师范大学信息科学与工程学院,济南 250358;4.山东联合电力产业发展有限公司,济南 250100

作者简介:

通讯作者:

基金项目:

国网山东省电力公司科技项目(520607200002);国网临沂供电公司“基于深度学习地物识别及多目标路径规划的人工智能勘测与设计研究”项目(6400072654)。


Power Target Detection in Aerial Images Based on SSD Deep Neural Network
Author:
Affiliation:

1.State Grid Shandong Electric Power Company,Ji’nan 250001,China;2.State Grid Linyi Electric Power Company,Linyi 276000,China;3.School of Information Science and Engineering,Shandong Normal University, Ji’nan 250358,China;4.Shandong United Electric Power Industrial Development Co., Ltd.,Ji’nan 250100,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提高农村配电网智能化设计水平,满足配电线杆路径自动规划的需求,本文利用深度神经网络对配电网规划区域航拍图像中的典型电力目标进行识别以实现可行区域的自动筛选。首先利用无人机航拍获得配电网规划区域的高分辨率图像,构建了包含11类、32 118个典型电力目标的数据集。然后通过对Faster-RCNN、YOLO、SSD(Single shot multibox detector)三种网络模型的实用对比,确定采用SSD网络进行典型电力目标的检测与识别,最终给出了配电网线杆规划的可行区域。实验表明,相比于Faster-RCNN与YOLO网络模型,SSD网络模型能够对变电站、配电室、箱变等典型电力目标进行有效的检测与识别,识别准确率为68.5%,达到了实用的要求。本文提出的智能识别方式为电力设计提供了技术支持,降低了配电网设计的人工成本并提高了效率。

    Abstract:

    To improve the intelligent design of the rural power distribution network, this paper proposes to identify the typical power targets that affect the design of the distribution network in the aerial images using deep neural networks. Firstly, we use UAV to obtain high spatial resolution aerial images of the distribution network planning area, and construct a data set containing 11 categories and 32 118 typical power targets. Then, through the practical comparison of Faster-RCNN, YOLO and single shot multibox detector (SSD) methods, SSD is selected to detect and identify typical power targets. Finally, feasible areas of distribution network pole planning are obtained. Experimental results show that compared with Faster-RCNN and YOLO, SSD can effectively detect and identify typical power targets such as the substation, distribution room and box transformer, and the recognition accuracy reaches 68.5%, which meets the practical requirements. The proposed method provides the technical support for the power design, reduces the labor cost and improves the efficiency of distribution network design.

    表 4 不同比例测试数据量下SSD模型的检测准确率Table 4 Target detection accuracy of SSD with different test data
    表 1 典型电力目标标注情况Table 1 Annotation information about classical power targets
    图1 SSD模型网络结构Fig.1 Network structure of SSD
    图2 VGG16 网络结构图Fig.2 Network structure of VGG16
    图3 本文研究区域Fig.3 Research areas in this paper
    图4 3种不同方法的部分目标检测结果Fig.4 Partial results of different three methods
    图5 电力目标对可行区域的影响Fig.5 Influences of power target on the feasible regions
    表 3 不同训练数据量下的目标检测准确率Table 3 Target detection accuracy with different training data
    表 2 电力目标检测数值指标Table 2 Numerical values of power target detection
    参考文献
    相似文献
    引证文献
引用本文

石鑫,化晨冰,张凯,王才建,王士勇.基于SSD深度神经网络的航拍图像电力目标检测[J].数据采集与处理,2022,37(1):207-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-02-15
  • 最后修改日期:2021-05-08
  • 录用日期:
  • 在线发布日期: 2022-01-25