基于特征工程和支持向量机的甲烷预混火焰当量比测量
作者:
作者单位:

1.贵州大学电气工程学院,贵阳 550025;2.贵州交通职业技术学院物流工程系,贵阳 550025

作者简介:

通讯作者:

基金项目:

贵州省科学技术基金 (黔科合基础[2018]1030);贵州省教育厅创新群体研究基金(黔教合KY字[2021]012)。


Methane Premixed Flame Equivalence Ratio Measurement Based on Feature Engineering and Support Vector Machine
Author:
Affiliation:

1.College of Electrical Engineering, Guizhou University, Guiyang 550025, China;2.Department of Logistics Engineering, Guizhou Communications Polytechnic, Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用火焰颜色建模测量火焰当量比是燃烧诊断技术的一个新兴研究方向。目前的建模方法主要利用RGB(Red-green-blue)模型中蓝色/绿色特征(B/G)作为模型输入,但通过单一颜色比值简单拟合得到的颜色-当量比模型存在较大的不确定性及测量误差,因此本文提出利用多颜色模型下的多颜色特征参数作为模型输入。首先,采用数字火焰颜色分布(Digital flame colour distribution, DFCD)技术对采集甲烷燃烧预混火焰图像进行处理并获取火焰图像目标区域(Region of interest, RoI)。其次,综合分析火焰颜色特征变量构建特征工程,设计并提取火焰目标区域的不同颜色模型下的多颜色特征,共计36维火焰颜色特征,利用Spearman秩相关性分析与随机森林(Random forest, RF)算法筛选出表征燃烧当量比更深层的颜色特征,得到16维优质特征子集。最后,通过优化持向量机(Support vector machine,SVM)参数选择,并采用网格搜索方法(Grid search method, GSM)寻求最优参数优化SVM,进一步利用特征工程构建得到的特征子集训练SVM以建立预混火焰燃烧当量比软测量模型。将该算法与传统的BP神经网络和极限学习(Extreme learning machine, ELM)算法进行对比,实验结果表明,本文方法具有较好的回归预测效果,均方误差(Mean square error, MSE)低至0.023。

    Abstract:

    Flame equivalence ratio measurement using flame color modeling method, is an emerging research direction in the combustion diagnosis technology. At present, the modeling methods mainly use the blue/green color features (B/G) in the RGB(Red-green-blue)model as the modeling input, however, the color equivalence ratio modeling by single color ratio fitting has large uncertainty and measurement errors. Therefore, this paper proposes to use the multi-color feature parameters under different-color models as the modeling inputs. Firstly, the digital flame color distribution (DFCD) technology is used to process the methane premixed flame image and obtain the region of interest (RoI) of flame images. Secondly, the flame color feature variables are comprehensively analyzed, and the multi-color features under different color models are designed and extracted, which are 36 color features. Then, the Spearman rank correlation analysis and random forest (RF) algorithm are used to screen out the deeper color features, and 16 dimensional high-quality features are selected. At last, the optimal support vector machine (SVM) parameters are selected using the grid search method (GSM). Furthermore, the equivalence ratio measurement model of premixed methane flame is trained by SVM using the feature subset constructed. The algorithm is compared with the traditional BP neural network and the extreme learning machine (ELM) algorithm. Experimental results show that the algorithm has better regression prediction effect, and the mean square error (MSE) decreases to 0.023.

    表 3 参数寻优结果对比Table 3 Comparison of parameter optimization results
    表 1 火焰图像颜色特征Table 1 Color features of flame image
    表 2 RGB颜色空间特征之间的相关系数矩阵Table 2 Correlation coefficient matrix between RGB color space features
    图1 燃烧平台基本示意图Fig.1 Schematic of combustion platform
    图2 本文提出的甲烷预混火焰当量比测量系统框图Fig.2 Diagram of the proposed methane premixed flame equivalent ratio measurement system
    图3 Fig.3 Flame image data under different working conditions
    图4 基于DFCD技术的火焰图像目标区域获取算法流程Fig.4 Diagram of flame RoI using DFCD
    图5 基于DFCD技术的火焰图像分割结果Fig.5 Flame image segmentation by DFCD
    图6 基于RF算法火焰颜色特征重要性排序Fig.6 Importance ranking of flame color features based on RF algorithm
    图7 基于SVM预混火焰燃烧当量比预测结果相对误差Fig.7 MSE of prediction result based on SVM premixed flame combustion equivalent ratio
    图8 基于不同算法的预混火焰燃烧当量比预测结果对比Fig.8 Combustion equivalence ratio prediction result comparison of premixed flame based on different algorithms
    图9 基于不同算法预混火焰燃烧当量比回归预测绝对误差结果对比Fig.9 AE comparison of combustion equivalence ratio regression prediction for premixed flames based on different algorithms
    表 4 不同算法表现性能结果对比Table 4 Comparison of performance results of different algorithms
    参考文献
    相似文献
    引证文献
引用本文

陈长友,傅钰雯,涂沛驰,舒文,杨健晟.基于特征工程和支持向量机的甲烷预混火焰当量比测量[J].数据采集与处理,2022,37(1):194-206

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-12
  • 最后修改日期:2021-07-24
  • 录用日期:
  • 在线发布日期: 2022-01-25