基于特征选择和XGBoost优化的术中低体温预测
作者:
作者单位:

1.上海海事大学物流研究中心,上海 201306;2.浙江大学医学院附属邵逸夫医院麻醉恢复室,杭州 310020

作者简介:

通讯作者:

基金项目:


Intraoperative Hypothermia Prediction Model Based on Feature Selection and XGBoost Optimization
Author:
Affiliation:

1.Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China;2.Anesthesia Recovery Room, Shao Yifu Hospital Affiliated to Zhejiang University Medical College, Hangzhou 310020, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对全麻手术患者术中低体温发生率高、影响因素复杂的问题,提出了一种基于特征选择和XGBoost优化的术中低体温预测模型,以更好辅助医生对全麻手术患者的临床诊断。首先,利用随机森林(Random forest, RF)在处理高维数据集上的优势,通过RF的袋外估计法进行特征选择。然后,以极端梯度提升(XGBoost)为基础,利用基于精英保留策略的遗传算法,即EGA算法优化XGBoost超参数。最后,根据最优参数训练预测模型,并用于术中低体温预测。该模型组合利用3种算法优点,提升模型泛化能力和预测精度。实验结果表明:本文所提模型与逻辑回归、支持向量机等7种机器学习预测模型相比,预测准确率、精确度、召回率、AUC均有优势;与现有其他预测模型相比均有提升。

    Abstract:

    In view of the high incidence of intraoperative hypothermia and complex influencing factors in patients undergoing anesthesia, a prediction model of intraoperative hypothermia based on feature selection and XGBoost optimization is proposed to better assist doctors in the clinical diagnosis of patients. Firstly, the random forest (RF) is used to deal with the high-dimensional data sets, and features are selected by the RF out-of-bag estimation. Then, XGBoost hyperparameters are optimized using the genetic algorithm based on elite retention strategy, i.e., EGA. Finally, the prediction is trained according to the optimal parameters and thus can be used to predict intraoperative hypothermia. This model combines the advantages of three algorithms to improve model generalization ability and prediction accuracy. The experimental result shows that the proposed model performs better other seven machine learning classification prediction models such as logistic regression, support vector machine, and so on in prediction accuracy, precision, recall and AUC, and overcomes the three representative hyperparameter tuning methods.

    表 2 自变量特征赋值及特征重要性Table 2 Independent variable feature assignment and feature importance
    表 3 不同特征数量采用RF算法分类效果比较Table 3 RF classification effects of different feature numbers
    图1 术中低体温预测模型框架Fig.1 A prediction model frame of intraoperative hypothermia
    图2 模型分类精度随决策树数量变化Fig.2 Model classification accuracy varies with decision trees
    图3 前m个特征的OOB得分结果Fig.3 The first m features for OOB score
    图4 EGA-XGBoost优化过程图Fig.4 Optimization process of EGA-XGBoost model
    图5 EGA-GBDT优化过程图Fig.5 Optimization process of EGA-GBDT model
    图6 EGA-SVM优化过程图Fig.6 Optimization process of EGA-SVM model
    图7 EGA-XGBoost测试集混淆矩阵Fig.7 Confusion matrix of test set EGA-XGBoost
    图8 模型在测试集的ROC曲线下面积Fig.8 Area under the ROC curve of the model
    表 5 模型在测试集上的测试结果对比Table 5 Comparison of test results of model on the test
    表 6 XGBoost超参数调优方法及结果对比Table 6 Comparison of XGBoost hyperparameter tuning optimization
    表 4 EGA优化主流分类器超参数及交叉验证结果Table 4 Optimization of hyperparameters and results
    表 1 混淆矩阵Table 1 Confusion matrix
    参考文献
    相似文献
    引证文献
引用本文

曹立源,范勤勤,黄敬英.基于特征选择和XGBoost优化的术中低体温预测[J].数据采集与处理,2022,37(1):134-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-10-13
  • 最后修改日期:2021-11-18
  • 录用日期:
  • 在线发布日期: 2022-01-25