基于GhostNet与注意力机制的行人检测跟踪算法
作者:
作者单位:

武汉科技大学冶金自动化与检测技术教育部工程研究中心,武汉 430081

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2017YFC0805100)。


Pedestrian Detection and Tracking Algorithm Based on GhostNet and Attention Mechanism
Author:
Affiliation:

Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对复杂场景下仅依靠传统的目标检测与跟踪算法进行跟踪时准确度低且速度慢的问题,提出一种基于GhostNet与注意力机制结合的行人检测与跟踪算法。首先,将YOLOv3的主干网络替换为GhostNet,保留多尺度预测部分,利用Ghost模块减少深度网络模型参数和计算量,在Ghost模块中融入注意力机制给予重要特征更高的权值。然后,引入目标检测的直接评价指标GIoU来指导回归任务。最后,利用Deep-Sort算法进行跟踪。在公共数据集上实验表明,改进后的模型平均精确度均值(mean Average precision,mAP)达到了92.53%,帧速率是YOLOv3模型的2.5倍;所提算法跟踪准确度优于改进前及其他算法,可以精确有效地跟踪复杂场景下的多目标行人,并具有较强的鲁棒性。

    Abstract:

    Aiming at the problems of low accuracy and slow speed when only relying on traditional object detection and tracking algorithms in complex scenes, a pedestrian detection and tracking algorithm based on GhostNet and attention mechanism is proposed. First, the backbone network of YOLOv3 is replaced with GhostNet to retain the multi-scale prediction part, the Ghost module is used to reduce the parameters and calculations of the deep network model, and the attention mechanism is integrated into the Ghost module to give higher weight to important features. Then, the direct evaluation index GIoU of object detection is introduced to guide the regression task. Finally, the Deep-Sort algorithm is used for tracking. Experiments on public data sets show that: The mean Average precision (mAP) of the improved model reaches 92.53%, and the frame rate is 2.5 times that of the YOLOv3 model; The tracking accuracy of the proposed algorithm is better than that before the improvement and that of other algorithms; The algorithm can track multi-object pedestrians in complex scenes accurately and effectively, and has strong robustness.

    表 3 检测指标定义Table 3 Definition of test indexes
    表 1 模型参数信息表Table 1 Model parameter information table
    表 6 GhostNet对算法的影响Table 6 Influence of GhostNet on the algorithm
    表 7 SE注意力模块对算法的影响Table 7 Influence of SE attention module on the algorithm
    表 2 训练参数设置Table 2 Training parameter setting
    表 5 5个数据集上评估指标准确度rank-1结果对比Table 5 Comparison of rank-1 results of evaluation index standard accuracy on five datasets
    图1 YOLOv3多尺度预测部分结构图Fig.1 Structure of multi-scale prediction of YOLOv3
    图2 Ghost模块原理图Fig.2 Schematic diagram of Ghost module
    图3 Ghost 瓶颈层Fig.3 Ghost bottleneck layer
    图4 SE注意力模块原理图Fig.4 Schematic diagram of SE attention module
    图5 YOLOv3-GhostNet-SE网络结构图Fig.5 Network structure of YOLOv3-GhostNet-SE
    图6 改进前后YOLOv3的精确率-召回率曲线Fig.6 Precision-Recall curves of YOLOv3 and improved YOLOv3
    图7 改进前后YOLOv3的F1曲线Fig.7 F1 curves of YOLOv3 and improved YOLOv3
    图8 Market1501数据集行人目标跟踪结果Fig.8 Pedestrian target tracking results on Market151 dataset
    图9 CUHK03数据集行人目标跟踪结果Fig.9 Pedestrian target tracking results on CUHK03 dataset
    图10 S2数据集跟踪结果对比Fig.10 Comparison of tracking results on S2 data set
    图11 TUD-standemitte数据集跟踪结果对比Fig.11 Comparison of tracking results on TUD-standemitte data set
    表 9 TUD-standemitte序列跟踪结果对比Table 9 Comparison of tracking results on TUD-standemitte sequence
    表 8 S2序列跟踪结果对比Table 8 Comparison of tracking results on S2 sequence
    表 4 目标检测算法对比结果Table 4 Comparison results of target detection algorithms
    参考文献
    相似文献
    引证文献
引用本文

王立辉,杨贤昭,刘惠康,黄晶晶.基于GhostNet与注意力机制的行人检测跟踪算法[J].数据采集与处理,2022,37(1):108-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-01-23
  • 最后修改日期:2021-05-08
  • 录用日期:
  • 在线发布日期: 2022-01-25