MEL-YOLO:多任务人眼属性识别及关键点定位网络
作者:
作者单位:

上海电力大学电子与信息工程学院,上海 201306

作者简介:

通讯作者:

基金项目:


MEL-YOLO:Multi-task Human Eye Attribute Recognition and Key Point Location Network
Author:
Affiliation:

College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对当前人眼定位相关算法任务单一、且在多种干扰因素影响下(如光照、眼镜、遮挡)性能下降的问题,提出了可同时检测人眼感兴趣区域、识别人眼多种属性及定位关键点的轻量型神经网络MEL-YOLO。将YOLOV3算法与改进的DS-sandglass模块结合,在关键点回归分支应用去归一化的编解码方法提高网络定位宽度,并且在损失函数引入完全交并比(Complete intersection-over-union,CIoU)和均方误差(Mean square error,MSE),使得网络整体性能提升。MEL-YOLO算法在近红外虹膜数据集上人眼检测准确率为100%;属性识别和关键点定位准确率分别为98.7%和96.5%,在可见光数据集UBIRIS上分别达到92%和91%。实验结果证明:MEL-YOLO能同时实现人眼检测、属性识别及关键点定位,且准确率高、模型较小、泛化能力强,能够适用于低性能的边缘计算设备。

    Abstract:

    The existing eye location algorithms have some disadvantages of single task and performance degrade in complex environment such as illumination, glasses and occlusion, so a multi- efficient, light-YOLO and lightweight neural network, MEL-YOLO, is designed for obtaining eye multi-attributes and landmarks. Based on the YOLOV3 network, combining with the enhanced DS-sandglass block, a denormalized coding and encoding method is used in the regression branch of key points to promote the network positioning depth, and the complete intersection-over-union (CIoU) and the mean square error (MSE) are introduced into the loss function, so promoting the overall performance of the network. On the near-infrared dataset, the MEL-YOLO network achieves the position accuracy of 100%, and achieves the attribute recognition rate and the landmark accuracy rate of 98.7% and 96.5%, while reaches 92% and 91% on the UBIRS dataset. The experimental results demonstrate that the MEL-YOLO network can accurately obtain eye multi-attributes and key point information. Also, it is proved that MEL-YOLO is small and robust, and has the firm generalization ability, thus applying to low-performance edge computing devices.

    表 6 不同编码方式的实验结果结果Table 6 Results of different encoding methods
    表 4 整体和每类关键点定位情况Table 4 Position about key points of overall and each category
    表 3 不同IoU下区域测试准确率Table 3 Testing accuracy under different IoUs
    表 2 数据集构成Table 2 Dataset composition
    表 7 消融实验结果Table 7 Results of ablation study
    表 1 特征提取网络结构Table 1 Network structure of feature extraction
    表 8 不同方法的计算量和性能Table 8 FLOPs and peformance of different methods
    图1 虹膜(眼周)识别系统Fig.1 System of iris (periocular) recognition
    图2 MEL-YOLO网络输出结构Fig.2 Output structure of MEL-YOLO Network
    图3 先验框示意图Fig.3 Diagram of bounding box
    图4 Sandglass模块和DS-sandglass模块Fig.4 Sandglass block and DS-sandglass block
    图5 MEL-YOLO网络整体结构图Fig.5 Overall structure diagram of MEL-YOLO network
    图6 眼睛标注细节信息Fig.6 Eye label details
    图7 精确率-召回率曲线Fig.7 Precison-recall curve
    图8 MEL-YOLO 网络测试效果Fig.8 MEL-YOLO network test results
    图9 UBIRIS标注细节信息Fig.9 UBIRIS label details
    图10 UBIRIS数据集测试效果Fig.10 UBIRIS dataset test results
    表 5 不同输入尺寸的实验结果Table 5 Results of different input sizes
    参考文献
    相似文献
    引证文献
引用本文

吴东亮,沈文忠,刘林嵩. MEL-YOLO:多任务人眼属性识别及关键点定位网络[J].数据采集与处理,2022,37(1):82-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-25
  • 最后修改日期:2021-09-10
  • 录用日期:
  • 在线发布日期: 2022-01-25