基于层级注意力增进网络的多尺寸遮挡人脸检测
作者:
作者单位:

1.宁波财经学院数字技术与工程学院,宁波315175;2.吉林建筑大学市政与环境工程学院,长春130118

作者简介:

通讯作者:

基金项目:

2020 年度宁波市“科技创新 2025”重大专项暨“246”产业集群发展支撑引领计划 (2020Z008); 浙江省高等教育“十三五”第二批教学改革研究项目 (jg20190514) 。


Multi-size Occlusion Face Detection Based on Hierarchical Attention Enhancement Network
Author:
Affiliation:

1.College of Digital Technology and Engineering, Ningbo University of Finance & Economics, Ningbo 315175,China;2.School of Civil and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在SSD(Single shot multibox detector)单阶段人脸检测模型的基础上,针对复杂局部遮挡下人脸检测精确性差的问题,提出了一种基于层级注意力增进网络的多尺寸遮挡人脸检测方法。首先,在SSD基础网络的多层初始特征图上,通过引入注意力增进机制提升人脸可见区域的响应值。然后为不同增强特征层设计不同尺寸的锚框,以提高对多尺寸遮挡人脸的分层识别效果。最后在训练时将注意力损失函数、分类损失函数和回归损失函数融合为多任务损失函数,共同优化网络参数。在WIDER FACE人脸数据集和MAFA遮挡人脸数据集上的实验表明,本文方法的检测精确性和时效性均优于目前主流遮挡人脸检测方法。

    Abstract:

    Based on the single shot multibox detector (SSD) single-stage face detection model, this paper proposes a multi-size occlusion face detection method based on a hierarchical attention enhancement network to solve the problem of poor accuracy of face detection under complex partial occlusion. Firstly, on the multi-layer original feature map of SSD basic network, the attention enhancement mechanism is introduced to improve the response value of the visible region of the face. Then, different anchor sizes are designed for different enhancement feature layers to improve the hierarchical recognition effect of multi-scale occluded face. In training, the attention loss function, the classification loss function and the regression loss function are fused into a multi-task loss function to jointly optimize the network parameters. Experiments on the WIDER FACE dataset and the MAFA occlusion face dataset show that the detection accuracy and timeliness of the method are better than those of the current mainstream occlusion face detection methods.

    表 1 平均精度和检测速度对比结果Table 1 Comparison results of MAP and detection speed
    表 3 自对比实验结果Table 3 Self comparison experiment results
    表 2 平均精度对比结果Table 2 Average precision comparison
    图1 SSD单阶段人脸检测模型Fig.1 SSD single-stage face detection model
    图2 基于层级注意力增进网络的多尺寸遮挡人脸检测模型Fig.2 Multi-size occlusion face detection model based on hierarchical attention enhancement network
    图3 注意力增进网络Fig.3 Attention enhancement network
    图4 PR曲线对比Fig.4 Precision-recall curve comparison
    图5 MAFA测试集部分对比结果Fig.5 Partial comparison results of MAFA test set
    参考文献
    相似文献
    引证文献
引用本文

王麟阁,蒋宝军,潘铁军.基于层级注意力增进网络的多尺寸遮挡人脸检测[J].数据采集与处理,2022,37(1):73-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-05
  • 最后修改日期:2021-05-10
  • 录用日期:
  • 在线发布日期: 2022-01-25