结合混合符号压力函数的活动轮廓模型
作者:
作者单位:

1.湖北民族大学数学与统计学院,恩施 445000;2.湖北民族大学附属民大医院,恩施 445000

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62061016,61561019)。


Active Contour Model Combined with Hybrid Signed Pressure Function
Author:
Affiliation:

1.School of Mathmatics and Statistics, Hubei Minzu University, Enshi 445000, China;2.Minda Hospital, Hubei Minzu University, Enshi 445000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为分割灰度不均图像和各类噪声图像,本文提出了一个结合混合符号压力函数的活动轮廓模型。首先,利用图像的全局和局部信息,根据当前活动轮廓的位置,构造一个混合符号压力函数,该函数通过自适应权值线性组合一个全局压力项和一个局部压力项,得到图像相对于当前活动轮廓的混合压力。然后,结合此混合符号压力函数,构造活动轮廓的演化方程,最后通过交替迭代算法求解模型。实验中采用不同的人造、医学和自然图像对模型进行了测试,实验结果表明,该模型对初始轮廓有较强的鲁棒性,能有效分割灰度不均图像及各类噪声图像,并且相对于其他活动轮廓模型,本文模型具有最好的实验效果。

    Abstract:

    In this paper, an active contour model combined with the hybrid signed pressure function is proposed to segment the images with intensity inhomogeneity or noise. Firstly, according to the position of the current active contour, we define a hybrid signed pressure function by using the global and local information of the image, which is a linear combination of a global pressure and a local one with adaptive weights. Then, an evolution equation of the active contour is constructed based on the hybrid signed pressure function. Finally, an alternating iteration algorithm is devolved to solve the model. Different synthetical, medical and real images are used to test the model. The experimental results show that the proposed model is robust to the initial contour and can effectively segment the images with intensity inhomogeneity or noises. Compared with other active contour models, the proposed model has the best performance.

    表 1 不同模型的DSC系数Table 1 DSC coefficient values of different models
    表 2 不同模型的JS系数Table 2 JS coefficient values of different models
    图1 本文模型针对不同初始轮廓的分割结果Fig.1 Segmentation results of the proposed model with different initial contours
    图4 医学图像的分割结果Fig.4 Segmentation results of medical images
    图5 自然图像的分割结果Fig.5 Segmentation results of natural images
    图6 对高斯噪声图像的分割结果Fig.6 Segmentation results of image with Gaussian noise
    图7 不同模型的噪声图像分割对比结果Fig.7 Comparison of segmentation results of noisy images by different models
    图8 本文模型不同噪声图像的分割结果Fig.8 Segmentation results of different noise images by the proposed model
    Fig.
    Fig.
    参考文献
    相似文献
    引证文献
引用本文

郑婕,唐利明.结合混合符号压力函数的活动轮廓模型[J].数据采集与处理,2022,37(1):49-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-30
  • 最后修改日期:2021-07-15
  • 录用日期:
  • 在线发布日期: 2022-01-25