融合运动特征的高效视频火焰检测算法
作者:
作者单位:

1.南水北调中线建管局,北京100053;2.北京邮电大学人工智能学院,北京 100876;3.南水北调中线信息科技有限公司,北京 100053

作者简介:

通讯作者:

基金项目:


An Efficient Video Flame Detection Algorithm Integrating Motion Features
Author:
Affiliation:

1.Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Beijing 100053, China;2.School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;3.South-to-North Water Diversion Middle Route Information Technology Co.,Ltd., Beijing 100053, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出一种轻量高效的视频火焰检测算法。该算法以基于深度学习的卷积神经网络目标检测算法为主体,提取监控视频中的图像帧,识别并定位火焰区域。加入运动目标检测模块作为后处理机制,依据连续视频帧中火焰的运动特性,采用基于混合高斯模型的运动目标检测算法对火焰目标检测结果进行合理化判断,减少类似火焰的静止物体或光线造成的误报,效率高且资源消耗少。此外,收集并标注了一套火焰检测数据集(Fire detection dataset,FDD),包含多种场景下多类型燃烧物产生的火焰图片2 487张以及15段不同场景下的火灾视频数据。在FDD的视频检测实验中本文算法准确率达到了98.94%,证明了本文算法的有效性。

    Abstract:

    This paper proposes a lightweight and efficient flame detection algorithm of videos. The flame detection algorithm is based on the convolutional neural network of deep learning. Considering the motion characteristics of the flame in the continuous video frame, this paper evaluates the flame detection results by the motion object detection and removes the false positive results caused by stationary objects or lights. The motion object detection algorithm based on the Gaussian mixture model is highly efficient. In addition, we collect and label a set of fire detection dataset (FDD), including 2 487 flame images and 15 fire videos under various scenarios with different flammable materials. In conclusion, the proposed algorithm obtains 98.94% accuracy on FDD test videos.

    表 2 第1次实验不同颜色过滤区域检测结果Table 2 Detection results of different color filter intervals in the first experiment
    表 1 不同网络检测效果Table 1 Performance comparison of different detection networks
    图1 系统的整体结构Fig.1 Overall structure of the system
    图2 错误检测结果样例Fig.2 Some false detection results
    图3 运动目标检测流程图Fig.3 Flow chart of motion detection
    图4 数据集FDD中部分图像样本Fig.4 Some sample images of FDD
    图5 目标检测网络检测正确样本图与误报样本图Fig.5 Correct sample images and false positive images
    图6 二值化处理剔除非火焰效果图Fig.6 Effect picture of eliminating non flame by binarization
    图7 误报场景图片示例Fig.7 One of false positives
    表 4 运动目标检测模块对比实验Table 4 Comparison experiments of motion object detection module
    表 3 第2次实验不同颜色过滤区域检测结果Table 3 Detection results of different color filter intervals in the second experiment
    参考文献
    相似文献
    引证文献
引用本文

孙维亚,陈恺鑫,吴铭,王丹,杜立轩,马占宇.融合运动特征的高效视频火焰检测算法[J].数据采集与处理,2021,36(6):1276-1285

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-01-02
  • 最后修改日期:2021-03-02
  • 录用日期:
  • 在线发布日期: 2021-11-25