基于变异系数和模糊集的活动轮廓图像分割模型
作者:
作者单位:

宁夏大学数学统计学院, 银川 750021

作者简介:

通讯作者:

基金项目:

国家自然科学基金 (62061040,51769026)资助项目;宁夏自然科学基金(2018AAC03014)资助项目;宁夏区重点研发计划(2019BEG03056)资助项目;宁夏大学研究生创新基金(GIP2020059)资助项目。


Image Segmentation of Active Contour Model Based on Coefficient of Variation and Fuzzy Set
Author:
Affiliation:

School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于图像分割具有模糊性,提出了一个对灰度不均匀、高噪声图像的分割模型。该模型以模糊能量泛函为基础,结合区域和边缘信息,利用变异系数作为局部区域统计量,避免了噪声对分割的干扰,很好地提取了图像信息。区域能量可以平衡目标和背景的重要性,驱使初始轮廓向目标边界移动。边缘能量对伪水平集函数进行正则化,保持曲线演化过程中的平滑性。在求能量泛函极小值时,直接计算新旧能量泛函的差值以更新伪水平集。对于高噪声以及混合噪声和强度不均匀的合成和真实图像的分割结果表明,本文模型具有较好的分割效果。

    Abstract:

    Due to the fuzzy property of image segmentation, this paper proposes a segmentation model for non-uniform gray and high-noise images. The model is based on the fuzzy energy functional which combines with the regional and edge information, and uses the coefficient of variation as the local regional statistics, thus avoiding the interference of noise on the segmentation and extracting the image information well. Regional energy balances the importance of the target and the background, and drives the initial contour toward the target boundary. The edge energy regularizes the pseudo-level set function to maintain the smoothness of the curve evolution. To find the minimum value of the energy functional, the difference between the old and new energy functional is calculated directly so as to update the pseudo level set. The segmentation results of synthetic and real images with high noise, mixed noise and uneven intensity show that the model has a good segmentation effect.

    图2 本文模型对多目标图像的分割Fig.2 Segmentation results of multi-target images by the proposed model
    图3 不同模型对自然图像以及合成图像分割的结果Fig.3 Segmentation results for natural and synthetic images using different models
    图4 本文模型对初始轮廓的鲁棒性Fig.4 Robustness of initial contour by the proposed model
    图5 对仙人柱进行分割时的曲线演化过程Fig.5 Curve evolution process of partitioning Cactus image
    图6 噪声图像的分割结果Fig.6 Segmentation results of noisy images
    图7 用于客观评价的图像Fig.7 Images for objective evaluation
    表 1 FRAGL, HLFRA模型与本文模型图像分割的CPU时间对比Table 1 Comparison of CPU time of FRAGL, HLFRA and the proposed models
    表 2 客观评价指标的比较Table 2 Comparison of objective evaluation indexes
    参考文献
    相似文献
    引证文献
引用本文

黄丽转,刘国军,魏立力.基于变异系数和模糊集的活动轮廓图像分割模型[J].数据采集与处理,2021,36(6):1250-1262

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-01-19
  • 最后修改日期:2021-05-06
  • 录用日期:
  • 在线发布日期: 2021-11-25