基于自适应滑动窗口的漏磁数据灰度化增强方法
作者:
作者单位:

1.中国海洋石油有限公司,北京 100010;2.东北大学信息科学与工程学院,沈阳 110004;3.鞍钢集团矿业有限公司眼前山分公司,鞍山 114044

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2017YFF0108804)资助项目。


A Gray Enhancement Method with Magnetic Flux Leakage Signals Based on Self-adaptive Sliding Window
Author:
Affiliation:

1.China National Offshore Oil Corporation, Beijing 100010, China;2.College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;3.Anshan Iron and Steel Group Coporation Qianyanshan Branch,Anshan 114044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    管道无损检测领域中传统的漏磁数据灰度可视化方法在缺陷曲线视图显示时具有延迟大、灰度视图辨识度低的缺点。针对该问题,本文提出了一种基于自适应滑动窗口的漏磁数据灰度化特征增强方法。首先,根据漏磁数据特点建立非等量分类标签并设置降采样比,实现对原始漏磁数据的降采样显示;然后,根据预处理后的漏磁数据设计自适应滑动窗口及灰度值补偿算法,实现漏磁数据的局部分段灰度映射;最后,基于漏磁数据分类标签设计自适应灰度映射方法,得到清晰的漏磁数据灰度视图。通过对比实验,验证了所提方法的先进性和有效性。

    Abstract:

    In pipeline nondestructive testing, the traditional gray-scale visualization method of magnetic flux leakage (MFL) data has the disadvantages of large display delay and low identification degree for the defect curve view and the gray-scale view, respectively. To solve these problems, an self-adaptive sliding window based gray feature enhancement method for MFL data is proposed. Firstly, according to the characteristics of MFL data, the unequal classification label is established and the down-sampling ratio is set to realize the down-sampling display of the original MFL data. Then, according to the preprocessed MFL data, the self-adaptive sliding window and gray value compensation algorithm are designed to realize the local gray mapping of MFL data. Finally, an self-adaptive gray mapping method is designed based on MFL data classification label to get a clear gray view of MFL data. Some comparative experiments are conducted to verify the advance and effectiveness of the proposed method.

    图1 可视化算法流程图Fig.1 Visualization algorithm flow chart
    图2 基于自适应滑动窗口的灰度映射算法流程图Fig.2 Flow chart of gray mapping algorithm based on self-adaptive sliding window
    图3 窗口自适应调整示意图Fig.3 Diagram of window self-adaptive adjustment
    图4 管道缺陷数据采集及测量验证Fig.4 Data collection of pipeline defect and its measurement verification
    图5 管道内检测器结构Fig.5 Structure of detector in pipeline
    图6 漏磁内检测原理图Fig.6 MFL detection schematic diagram
    图7 局部平稳管段轴向漏磁数据抽样效果对比图Fig.7 Comparison of sampling effect of axial MFL signals for partially stable pipe section
    图8 局部特征密集管段轴向漏磁数据抽样效果对比图Fig.8 Comparison of sampling effect of axial MFL signals of pipe section with dense local characteristics
    图9 单一缺陷漏磁信号图Fig.9 MFL signals of single defect
    图10 局部复杂管段轴向漏磁数据抽样效果对比图Fig.10 Comparison of sampling effect of axial MFL data of local complex pipe section
    图11 算法处理前后绘图时间对比Fig.11 Comparison of drawing time before and after algorithm processing
    图12 算法处理前后拖动延迟对比Fig.12 Comparison of drag delay before and after algorithm processing
    图13 典型缺陷多种灰度可视化效果对比Fig.13 Visual contrast of several gray levels of typical defects
    图14 轴向灰度图像指标变化趋势图Fig.14 Change trend of axial gray image index
    图15 含焊缝且缺陷密集管段可视化效果对比图Fig.15 Comparison of visualization effect of pipe section with weld and dense defects
    图16 含焊缝且缺陷密集管段轴向灰度图像指标变化趋势Fig.16 Change trend of axial gray image index of pipe section with weld and dense defects
    图17 含法兰及缺陷管段可视化效果对比图Fig.17 Comparison of visualization effect of pipe section with flange and defect
    图18 含法兰及缺陷管段轴向灰度图像指标变化趋势Fig.18 Change trend of axial gray image index of pipe section with flange and defect
    表 2 不同管段处理后曲线可视化指标分析Table 2 Analysis of curve visualization indexes of different pipe sections after treatment
    表 1 不同抽样比下的漏磁数据抽样率Table 1 Sampling rate of MFL signals under different sampling ratios
    参考文献
    相似文献
    引证文献
引用本文

王增国,王雷,黄方佑,刘金海,张宝金.基于自适应滑动窗口的漏磁数据灰度化增强方法[J].数据采集与处理,2021,36(6):1205-1216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-09-14
  • 最后修改日期:2021-04-27
  • 录用日期:
  • 在线发布日期: 2021-11-25