大规模MIMO通信中基于Jacobi预迭代的改进Gauss-Seide算法
作者:
作者单位:

南京信息工程大学电子与信息工程学院,南京 210044

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61501244,61501245)资助项目;江苏省自然科学基金(BK20150932)资助项目。


Improved Gauss-Seide Algorithm Based on Jacobi Pre-iteration in Massive MIMO Communication
Author:
Affiliation:

School of Electronics & Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在大规模MIMO系统中,现有的高斯-赛德尔(Gauss-Seide,GS)算法相较于最小均方误差(Minimum mean-square error,MMSE)算法,GS的复杂度较低,但其检测性能相比而言较差。本文提出一种适用于大规模MIMO系统上行链路检测的基于雅克比预迭代改进的高斯-赛德尔(Jacobi-improved Gauss-Seide,JA-IGS)检测算法,该算法首先通过引入雅可比(Jacobi,JA)预迭代器来优化迭代初始解,然后对传统的GS进行线性优化,在增加较低复杂度情况下,检测性能和收敛速度有明显提升。仿真结果表明,与传统GS和JA检测算法相比,该算法具有较低的误码率(Bit error ratio,BER)和较高的计算效率。

    Abstract:

    In massive MIMO systems, the existing Gauss-Seide (GS) algorithm has lower complexity than the minimum mean-square error (MMSE) algorithm, while the detection performance is worse. This paper proposes a Jacobi-improved Gauss-Seide (JA-IGS) detection algorithm suitable for the uplink detection of massive MIMO systems. The algorithm first optimizes the iterative initial solution by introducing a Jacobi (JA) pre-iterator. Then the traditional GS is optimized linearly. With the increase of lower complexity, the detection performance and convergence speed are significantly improved. Simulation results show that compared with traditional GS and JA detection algorithms, the algorithm has a lower Bit error ratio (BER) and higher computational efficiency.

    图1 大规模MIMO系统模型Fig.1 Massive MIMO system model
    图2 基于JA-GS检测器Fig.2 Detector based on JA-GS
    图3 JA-IGS算法流程图Fig.3 JA-IGS algorithm flow chart
    图4 天线数量与算法计算复杂度的关系Fig.4 Relationship between the number of antennas and the computational complexity of the algorithm
    图5 JA-IGS算法误码率性能比较(64×16)Fig.5 Comparison of BER performance of proposed JA-IGS algorithm (64×16)
    图6 JA-IGS算法误码率性能比较(128×16)Fig.6 Comparison of BER performance of proposed JA-IGS algorithm (128×16)
    图7 不同基站天线数,JA-IGS算法的误码率性能比较Fig.7 Comparison of BER performance of proposed JA-IGS algorithm with different numbers of base station antenna
    图8 BPSK、QPSK、16QAM和64QAM调制下的JA-IGS性能比较Fig.8 Comparison of BER performance of proposed JA-IGS algorithm with different modulation schemes (BPSK, QPSK, 16QAM and 64QAM)
    表 4 在SNR=12 dB时,不同用户天线数JA-IGS算法的实乘次数Table 4 Actual multiplication times of the JA-IGS algorithm for different user antenna numbers when SNR=12 dB
    表 2 模拟参数Table 2 Simulation parameters
    表 3 SNR=12 dB时,不同算法在64×16天线数量前提下的每比特实乘次数Table 3 Actual multiplication times per bit under the premise of 64×16 antennas for different algorithms when SNR=12 dB
    参考文献
    相似文献
    引证文献
引用本文

史传胜,冯姣,司闯,张锐.大规模MIMO通信中基于Jacobi预迭代的改进Gauss-Seide算法[J].数据采集与处理,2021,36(6):1167-1175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-05-24
  • 最后修改日期:2021-09-13
  • 录用日期:
  • 在线发布日期: 2021-11-25