基于双迭代聚能量字典学习的数据压缩算法
作者:
作者单位:

1.南京航空航天大学自动化学院,南京 211106;2.高速载运设施的无损检测监控技术工业和信息化部重点实验室,南京 211106

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2018YFB2003304)资助项目;国家自然科学基金(61871218)资助项目;中央高校基本科研业务费(NJ2019007, NJ2020014)资助项目。


Data Compression Algorithm Based on Dual-iteration Concentrated Dictionary Learning
Author:
Affiliation:

1.College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2.Non-Destructive Testing and Monitoring Technology for High-Speed Transport Facilities Key Laboratory of Ministry of Industry and Information Technology, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对基于稀疏表示(Sparse representation,SR)的数据压缩压缩率低、重构精度低等问题,本文提出一种基于双迭代的聚能量字典学习算法,把高维信号映射到低维特征空间,当低维特征空间保留高维原始信号越多的特征时,高维信号从低维特征空间中恢复出来的精度越高。为了使低维字典保留高维字典更多的主成分,本文提出了一个新的变换,被命名为?变换,能提升高维字典的能量集中性。除此之外,针对高维字典与低维字典的耦合关系,建立了双循环迭代训练,增加字典的能量集中性与字典的表达能力。实验表明,相比于传统算法,本文提出算法字典学习收敛速度提升了3倍以上。此外,该方法可以得到较高的压缩比和更高质量的重构信号。

    Abstract:

    As the data compression methods based on sparse representation (SR) have the problems of low compression ratio and reconstruction accuracy, a dual-iteration concentrated dictionary learning algorithm is proposed. This algorithm maps high-dimensional signals to low-dimensional feature spaces. If features of the high-dimensional original signal are retained by the low-dimensional feature space, higher accuracy will be achieved when the high-dimensional signal is reconstructed from the low-dimensional feature space. To keep more principal components of high-dimensional dictionaries in low-dimensional dictionaries, a new transformation algorithm named ? transformation is proposed. It can improve the energy concentration of the high-dimensional dictionary. Further, aiming at the coupling relationship between the high-dimensional dictionary and the low-dimensional dictionary, a dual-iteration training method is established to improve the energy concentration and the expressive ability of the dictionary. Experiments show that, compared with the traditional algorithms, the convergence speed of the proposed algorithm is improved by more than three times. In addition, a higher compression ratio and a higher quality reconstructed signal are obtained.

    表 1 不同信号训练的平均迭代次数Table 1 Average iterations for different signal training methods
    图1 不同字典的奇异值分布Fig.1 Singular values distribution of different dictionaries
    图2 DICDL算法示意图Fig.2 Schematic diagram of DICDL algorithm
    图3 压缩与解压缩流程图Fig.3 Data compression and decompression process
    图4 不同压缩比的涡流信号恢复质量Fig.4 Restoration quality of eddy current signals with different compression ratios
    图5 信号在不同测量维度下的重构精度(PRD)Fig.5 Signal reconstruction accuracy (PRD) under different measurement dimensions
    图6 在不同压缩比下的重构信号Fig.6 Reconstructed signals under different compression ratios
    参考文献
    相似文献
    引证文献
引用本文

代少飞,刘文波,王郑毅,李开宇.基于双迭代聚能量字典学习的数据压缩算法[J].数据采集与处理,2021,36(6):1147-1156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-11-02
  • 最后修改日期:2021-03-06
  • 录用日期:
  • 在线发布日期: 2021-11-25