基于改进的U-Net和YOLOv5的绝缘子掩模获取与缺陷检测
作者:
作者单位:

1.华南师范大学物理与电信工程学院,广州 510006;2.广东省量子调控工程与材料重点实验室,广州 510006;3.广东省光电检测仪器工程技术研究中心,广州 510006;4.华南师范大学物理国家级实验教学示范中心,广州 510006

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61371176)资助项目。


Insulator Mask Acquisition and Defect Detection Based on Improved U-Net and YOLOv5
Author:
Affiliation:

1.School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;2.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou 510006, China;3.Guangdong Provincial Engineering Technology Research Center for Optoelectronic Instrument, Guangzhou 510006, China;4.National Demonstration Center for Experimental Physics Education, South China Normal University, Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    输电线路的绝缘子定期巡检是必不可少的一项任务,而传统的人工巡检存在着效率低、工作强度大等问题。因此,本文设计了一种改进的U-Net模型实现对绝缘子的分割,并使用改进的YOLOv5实现在复杂背景下对爆破绝缘子的定位。本文基于U-Net图像语义分割模型,提出一种改进的网络结构SERes-Unet。模型引入残差结构减少卷积过程中存在的梯度消失、结构信息损耗的影响,引入注意力机制对特征权重进行校正,从而提升网络性能。为实现对高分辨率图像的爆破绝缘子检测,提出将图片进行切割再进行检测,再通过非极大值抑制(Non-maximum suppression,NMS)进行筛选,获取图像全部爆破绝缘子的位置。本文设计的多组实验验证了模型的有效性和高效性。本文方法绝缘子分割精度达到0.96,爆破绝缘子检测精确率达到0.97,召回率达到0.99。

    Abstract:

    Regular inspection of insulators of transmission lines is an indispensable task, while traditional manual inspections have problems such as low efficiency and high work intensity. Therefore, this paper designs an improved U-Net model to realize the segmentation of insulators, and uses an improved YOLOv5 to realize the positioning of blasting insulators in complex backgrounds. Based on the U-Net image semantic segmentation model, this paper proposes an improved network structure SERes-Unet. The model introduces residual structure to reduce the influence of gradient disappearance and structural information loss in the convolution process, and introduces an attention mechanism to correct feature weights, thereby improving network performance. In order to realize the detection of blasting insulators on high-resolution images, it is proposed to cut the pictures and then detect them, and then filter through Non-Maximum suppression(NMS) to obtain the positions of all blasting insulators in the image. The article designs multiple sets of experimental controls to verify the effectiveness and efficiency of the model. In the end, the method achieves an insulator segmentation accuracy of 0.96, a blasting insulator detection accuracy of 0.97, and a recall rate of 0.99.

    表 3 目标检测模型与改进模型的效果对比Table 3 Performance comparison between target detection model and improved model
    表 2 原始模型与改进优化模型的效果对比Table 2 Performance comparison between the original and improved models
    表 1 数据增强前后的在U-Net模型上的效果对比Table 1 Performance comparison on the U-Net model before and after data augmentation
    图1 U-Net的网络结构Fig.1 Network structure of U-Net
    图2 SERes-Unet网络结构Fig.2 Network structure of SERes-Unet
    图3 Resnet-block的结构Fig.3 Structure of Resnet-block
    图4 改进的YOLOv5网络结构Fig.4 Network structure of improved YOLOv5
    图5 原始模型与改进模型的Dice系数Fig.5 Dice coefficient of the original and improved models
    图6 原始模型与改进模型预测结果对比Fig.6 Comparison of prediction results between original and improved models
    图7 原始模型与改进模型预测结果的细节对比Fig.7 Detail comparison of the prediction results between original and improved models
    图8 优化YOLOv5 训练曲线图Fig.8 Improved YOLOv5 training curves
    参考文献
    相似文献
    引证文献
引用本文

唐小煜,熊浩良,黄锐珊,林威霖.基于改进的U-Net和YOLOv5的绝缘子掩模获取与缺陷检测[J].数据采集与处理,2021,36(5):1041-1049

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-09-23
  • 最后修改日期:2021-02-28
  • 录用日期:
  • 在线发布日期: 2021-09-25