基于因子图结合卡方检测的多AUV协同定位方法
作者:
作者单位:

1.河南工业职业技术学院,南阳 473000;2.华中科技大学计算机科学与技术学院, 武汉 430074;3.郑州大学信息工程学院,郑州 450001

作者简介:

通讯作者:

基金项目:


Multi-AUV Cooperative Localization Method Based on Factor Graph Combined with Chi-Square Detection
Author:
Affiliation:

1.Henan Polytechnic Institute, Nanyang 473000, China;2.School of Computer Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China;3.School of Information Engineering,Zhengzhou University, Zhengzhou 450001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对复杂的水下环境导致水声通信噪声出现异常值的问题,提出一种基于因子图结合卡方检测的多AUV协同定位算法。建立因子图模型将全局函数估计问题转化为局部函数和积估计问题,利用卡方检测测距噪声异常值。所提算法在测距噪声存在异常值情况下,与传统Kalman滤波算法相比定位误差大幅减小。该研究进行了数学仿真验证,验证了所提算法可以有效提高系统的定位稳定性,处理测距噪声异常值对定位性能的影响。

    Abstract:

    In order to solve the problem of abnormal value of underwater acoustic communication noise caused by complex underwater environment, a multi-AUV cooperative localization algorithm based on factor graph and chi-square detection is proposed. A factor graph model is developed to transform the global function estimation problem into a local function and product estimation problem, using cardinality to detect ranging noise outliers. The proposed algorithm significantly reduces the localization error compared with the conventional Kalman filtering algorithm in the presence of ranging noise outliers. The study is validated with mathematical simulations, showing that the proposed algorithm can effectively improve the positioning stability of the system and deal with the effects of ranging noise outliers on the positioning performance.

    图1 三维运动学模型在二维水平面的投影Fig.1 Projection of 3D kinematic model on 2D horizontal plane
    图2 FG模型示意图Fig.2 Schematic diagram of FG model
    图3 基于FG的CL算法示意图Fig.3 Schematic diagram of CL algorithm based on FG
    图4 水下声学通信示意图Fig.4 Schematic diagram of underwater acoustic communication
    图5 主-AUV和从-AUV的基准航行轨迹Fig.5 Reference trajectories of master-AUV and slave-AUV
    图6 从-AUV定位误差对比图Fig.6 Slave-AUV positioning error comparison diagram
    图7 多AUV系统测距噪声异常值Fig.7 Multi-AUV system noise outliers
    图8 卡方检测的测距噪声异常值检验统计量Fig.8 Test statistics of ranging noise outliers detected by chi-square
    图9 测距噪声异常值情况下从-AUV轨迹曲线对比图Fig.9 Comparison of slave-AUV trajectory curve in the case of abnormal value of ranging noise
    图10 测距噪声异常值情况下从-AUV定位误差对比图Fig.10 Comparison of slave-AUV positioning error in case of abnormal value of ranging noise
    图11 水声噪声异常值情况下各算法定位误差比较Fig.11 Comparison of positioning errors of various algorithms in the case of abnormal values of underwater acoustic noise
    参考文献
    相似文献
    引证文献
引用本文

涂豫,李国胜,覃羡烘.基于因子图结合卡方检测的多AUV协同定位方法[J].数据采集与处理,2021,36(5):978-985

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2020-10-27
  • 最后修改日期:2021-07-07
  • 录用日期:
  • 在线发布日期: 2021-09-25