基于改进DBSCAN算法估计欠定混合矩阵的应用研究
作者:
作者单位:

1.哈尔滨工程大学信息与通信学院,哈尔滨 150001;2.哈尔滨工程大学先进船舶通信与信息技术重点实验室,哈尔滨 150001

作者简介:

通讯作者:

基金项目:


Application Research of Underdetermined Mixed Matrix Estimation Based on Improved DBSCAN Algorithm
Author:
Affiliation:

1.College of Information and Communication Engneering,Harbin Engineering University, Harbin 150001, China;2.Key Laboratory of Advanced Ship Communication and Information Technology, Harbin Engineering University, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对欠定盲源分离(Underdetermined blind source separation, UBSS)问题,采用基于密度的空间聚类(Density based spatial clustering of applications with noise, DBSCAN)算法估计聚类中心时易陷入局部最优,因此由聚类中心坐标构成的混合矩阵的精度降低,导致信号分离结果不理想。本文在DBSCAN基础上提出布谷鸟自适应搜索群优化算法(Cuckoo adaptive search swarm optimization of density based spatial clustering of applications with noise, CASSO-DBSCAN),该算法依据Levy飞行策略增强全局自适应搜索能力,并利用群体学习思想精细寻优得到最优解,从而更加精准地估计聚类中心。通过语音信号的盲源分离仿真实验对该算法进行验证,结果表明,该算法能够有效改善欠定混合矩阵的估计精度,具有良好的鲁棒性,证明了其可行性。

    Abstract:

    Aiming at the issue of underdetermined blind source separation (UBSS), when using the density based spatial clustering of applications with noise (DBSCAN) algorithm to estimate the cluster center, it is easy to fall into the local optimum. Therefore, the accuracy of the mixing matrix composed of the cluster center coordinates is reduced, resulting in unsatisfactory signal separation results. This paper proposes a cuckoo adaptive search swarm optimization based on DBSCAN (CASSO-DBSCAN) algorithm. The algorithm enhances the global adaptive search ability based on the Levy flight strategy, and uses the idea of learning from the group to refine the optimization to obtain the optimal solution, which can estimate the cluster centers more accurately. The paper verifies the algorithm through the simulation of blind source separation of speech signals. Results show that it can effectively improve the estimation accuracy of the underdetermined mixing matrix and has good robustness, which proves the feasibility of the algorithm.

    图1 CS算法目标适应度进化曲线图Fig.1 CS algorithm target fitness evolution figure
    图2 CASSO算法目标适应度进化曲线图Fig.2 CASSO algorithm target fitness evolution figure
    图3 本文算法流程图Fig.3 Flow chart of the proposed algorithm
    图4 4路源信号Fig.4 Four-channel source signals
    图5 2路观测信号Fig.5 Two-channel observation signals
    图6 4路语音信号 STFT 变换后散点图Fig.6 Scatter diagram of four-channel speech signals after STFT transformation
    图7 单源点检测并归一化后散点图Fig.7 Scatter diagram after single source point detection and normalization
    图8 5种算法不同信噪比下的NMSE对比图Fig.8 NMSE comparison of five algorithms with different SNRs
    表 1 5种方法的偏离角度和NMSETable 1 Deviation angle and NMSE of five methods
    参考文献
    相似文献
    引证文献
引用本文

王霖郁,夏敏,项建弘.基于改进DBSCAN算法估计欠定混合矩阵的应用研究[J].数据采集与处理,2021,36(5):969-977

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-27
  • 最后修改日期:2021-09-08
  • 录用日期:
  • 在线发布日期: 2021-09-25